Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Prerak T. Desai is active.

Publication


Featured researches published by Prerak T. Desai.


Cell Host & Microbe | 2011

Bacteroides in the Infant Gut Consume Milk Oligosaccharides via Mucus-Utilization Pathways

Angela Marcobal; Mariana Barboza; Erica D. Sonnenburg; Nicholas A. Pudlo; Eric C. Martens; Prerak T. Desai; Carlito B. Lebrilla; Bart C. Weimer; David A. Mills; J. Bruce German; Justin L. Sonnenburg

Newborns are colonized with an intestinal microbiota shortly after birth, but the factors governing the retention and abundance of specific microbial lineages are unknown. Nursing infants consume human milk oligosaccharides (HMOs) that pass undigested to the distal gut, where they may be digested by microbes. We determined that the prominent neonate gut residents, Bacteroides thetaiotaomicron and Bacteroides fragilis, induce the same genes during HMO consumption that are used to harvest host mucus glycans, which are structurally similar to HMOs. Lacto-N-neotetraose, a specific HMO component, selects for HMO-adapted species such as Bifidobacterium infantis, which cannot use mucus, and provides a selective advantage to B. infantis in vivo when biassociated with B. thetaiotaomicron in the gnotobiotic mouse gut. This indicates that the complex oligosaccharide mixture within HMOs attracts both mutualistic mucus-adapted species and HMO-adapted bifidobacteria to the infant intestine that likely facilitate both milk and future solid food digestion.


Journal of Clinical Microbiology | 2012

Diversity of the Cronobacter Genus as Revealed by Multilocus Sequence Typing

Susan Joseph; Hana Sonbol; Sumyya Hariri; Prerak T. Desai; Michael McClelland; Stephen J. Forsythe

ABSTRACT Cronobacter (previously known as Enterobacter sakazakii) is a diverse bacterial genus consisting of seven species: C. sakazakii, C. malonaticus, C. turicensis, C. universalis, C. muytjensii, C. dublinensis, and C. condimenti. In this study, we have used a multilocus sequence typing (MLST) approach employing the alleles of 7 genes (atpD, fusA, glnS, gltB, gyrB, infB, and ppsA; total length, 3,036 bp) to investigate the phylogenetic relationship of 325 Cronobacter species isolates. Strains were chosen on the basis of their species, geographic and temporal distribution, source, and clinical outcome. The earliest strain was isolated from milk powder in 1950, and the earliest clinical strain was isolated in 1953. The existence of seven species was supported by MLST. Intraspecific variation ranged from low diversity in C. sakazakii to extensive diversity within some species, such as C. muytjensii and C. dublinensis, including evidence of gene conversion between species. The predominant species from clinical sources was found to be C. sakazakii. C. sakazakii sequence type 4 (ST4) was the predominant sequence type of cerebral spinal fluid isolates from cases of meningitis.


Applied and Environmental Microbiology | 2010

Broad Conservation of Milk Utilization Genes in Bifidobacterium longum subsp. infantis as Revealed by Comparative Genomic Hybridization

Riccardo G. LoCascio; Prerak T. Desai; David A. Sela; Bart C. Weimer; David A. Mills

ABSTRACT Human milk oligosaccharides (HMOs) are the third-largest solid component of milk. Their structural complexity renders them nondigestible to the host but liable to hydrolytic enzymes of the infant colonic microbiota. Bifidobacteria and, frequently, Bifidobacterium longum strains predominate the colonic microbiota of exclusively breast-fed infants. Among the three recognized subspecies of B. longum, B. longum subsp. infantis achieves high levels of cell growth on HMOs and is associated with early colonization of the infant gut. The B. longum subsp. infantis ATCC 15697 genome features five distinct gene clusters with the predicted capacity to bind, cleave, and import milk oligosaccharides. Comparative genomic hybridizations (CGHs) were used to associate genotypic biomarkers among 15 B. longum strains exhibiting various HMO utilization phenotypes and host associations. Multilocus sequence typing provided taxonomic subspecies designations and grouped the strains between B. longum subsp. infantis and B. longum subsp. longum. CGH analysis determined that HMO utilization gene regions are exclusively conserved across all B. longum subsp. infantis strains capable of growth on HMOs and have diverged in B. longum subsp. longum strains that cannot grow on HMOs. These regions contain fucosidases, sialidases, glycosyl hydrolases, ABC transporters, and family 1 solute binding proteins and are likely needed for efficient metabolism of HMOs. Urea metabolism genes and their activity were exclusively conserved in B. longum subsp. infantis. These results imply that the B. longum has at least two distinct subspecies: B. longum subsp. infantis, specialized to utilize milk carbon, and B. longum subsp. longum, specialized for plant-derived carbon metabolism.


PLOS ONE | 2013

Virulence gene profiling and pathogenicity characterization of non-typhoidal Salmonella accounted for invasive disease in humans.

Jotham Suez; Steffen Porwollik; Amir Dagan; Alex Marzel; Yosef Ilan Schorr; Prerak T. Desai; Vered Agmon; Michael McClelland; Galia Rahav; Ohad Gal-Mor

Human infection with non-typhoidal Salmonella serovars (NTS) infrequently causes invasive systemic disease and bacteremia. To understand better the nature of invasive NTS (iNTS), we studied the gene content and the pathogenicity of bacteremic strains from twelve serovars (Typhimurium, Enteritidis, Choleraesuis, Dublin, Virchow, Newport, Bredeney, Heidelberg, Montevideo, Schwarzengrund, 9,12:l,v:- and Hadar). Comparative genomic hybridization using a Salmonella enterica microarray revealed a core of 3233 genes present in all of the iNTS strains, which include the Salmonella pathogenicity islands 1–5, 9, 13, 14; five fimbrial operons (bcf, csg, stb, sth, sti); three colonization factors (misL, bapA, sinH); and the invasion gene, pagN. In the iNTS variable genome, we identified 16 novel genomic islets; various NTS virulence factors; and six typhoid-associated virulence genes (tcfA, cdtB, hlyE, taiA, STY1413, STY1360), displaying a wider distribution among NTS than was previously known. Characterization of the bacteremic strains in C3H/HeN mice showed clear differences in disease manifestation. Previously unreported characterization of serovars Schwarzengrund, 9,12:l,v:-, Bredeney and Virchow in the mouse model showed low ability to elicit systemic disease, but a profound and elongated shedding of serovars Schwarzengrund and 9,12:l,v:- (as well as Enteritidis and Heidelberg) due to chronic infection of the mouse. Phenotypic comparison in macrophages and epithelial cell lines demonstrated a remarkable intra-serovar variation, but also showed that S. Typhimurium bacteremic strains tend to present lower intracellular growth than gastroenteritis isolates. Collectively, our data demonstrated a common core of virulence genes, which might be required for invasive salmonellosis, but also an impressive degree of genetic and phenotypic heterogeneity, highlighting that bacteremia is a complex phenotype, which cannot be attributed merely to an enhanced invasion or intracellular growth of a particular strain.


PLOS ONE | 2012

Comparative Analysis of Genome Sequences Covering the Seven Cronobacter Species

Susan Joseph; Prerak T. Desai; Yongmei Ji; Craig Cummings; Rita Shih; Lovorka Degoricija; Alain Rico; Pius Brzoska; Stephen E. Hamby; Naqash Masood; Sumyya Hariri; Hana Sonbol; Nadia Chuzhanova; Michael McClelland; Manohar R. Furtado; Stephen J. Forsythe

Background Species of Cronobacter are widespread in the environment and are occasional food-borne pathogens associated with serious neonatal diseases, including bacteraemia, meningitis, and necrotising enterocolitis. The genus is composed of seven species: C. sakazakii, C. malonaticus, C. turicensis, C. dublinensis, C. muytjensii, C. universalis, and C. condimenti. Clinical cases are associated with three species, C. malonaticus, C. turicensis and, in particular, with C. sakazakii multilocus sequence type 4. Thus, it is plausible that virulence determinants have evolved in certain lineages. Methodology/Principal Findings We generated high quality sequence drafts for eleven Cronobacter genomes representing the seven Cronobacter species, including an ST4 strain of C. sakazakii. Comparative analysis of these genomes together with the two publicly available genomes revealed Cronobacter has over 6,000 genes in one or more strains and over 2,000 genes shared by all Cronobacter. Considerable variation in the presence of traits such as type six secretion systems, metal resistance (tellurite, copper and silver), and adhesins were found. C. sakazakii is unique in the Cronobacter genus in encoding genes enabling the utilization of exogenous sialic acid which may have clinical significance. The C. sakazakii ST4 strain 701 contained additional genes as compared to other C. sakazakii but none of them were known specific virulence-related genes. Conclusions/Significance Genome comparison revealed that pair-wise DNA sequence identity varies between 89 and 97% in the seven Cronobacter species, and also suggested various degrees of divergence. Sets of universal core genes and accessory genes unique to each strain were identified. These gene sequences can be used for designing genus/species specific detection assays. Genes encoding adhesins, T6SS, and metal resistance genes as well as prophages are found in only subsets of genomes and have contributed considerably to the variation of genomic content. Differences in gene content likely contribute to differences in the clinical and environmental distribution of species and sequence types.


Applied and Environmental Microbiology | 2012

Consumption of Lysozyme-Rich Milk Can Alter Microbial Fecal Populations

Elizabeth A. Maga; Prerak T. Desai; Bart C. Weimer; Nguyet Dao; Dietmar Kültz; James D. Murray

ABSTRACT Human milk contains antimicrobial factors such as lysozyme and lactoferrin that are thought to contribute to the development of an intestinal microbiota beneficial to host health. However, these factors are lacking in the milk of dairy animals. Here we report the establishment of an animal model to allow the dissection of the role of milk components in gut microbiota modulation and subsequent changes in overall and intestinal health. Using milk from transgenic goats expressing human lysozyme at 68%, the level found in human milk and young pigs as feeding subjects, the fecal microbiota was analyzed over time using 16S rRNA gene sequencing and the G2 Phylochip. The two methods yielded similar results, with the G2 Phylochip giving more comprehensive information by detecting more OTUs. Total community populations remained similar within the feeding groups, and community member diversity was changed significantly upon consumption of lysozyme milk. Levels of Firmicutes (Clostridia) declined whereas those of Bacteroidetes increased over time in response to the consumption of lysozyme-rich milk. The proportions of these major phyla were significantly different (P < 0.05) from the proportions seen with control-fed animals after 14 days of feeding. Within phyla, the abundance of bacteria associated with gut health (Bifidobacteriaceae and Lactobacillaceae) increased and the abundance of those associated with disease (Mycobacteriaceae, Streptococcaceae, Campylobacterales) decreased with consumption of lysozyme milk. This study demonstrated that a single component of the diet with bioactivity changed the gut microbiome composition. Additionally, this model enabled the direct examination of the impact of lysozyme on beneficial microbe enrichment versus detrimental microbe reduction in the gut microbiome community.


Mbio | 2013

Evolutionary Genomics of Salmonella enterica Subspecies

Prerak T. Desai; Steffen Porwollik; Fred Long; Pui Cheng; Aye Wollam; Sandra W. Clifton; George M. Weinstock; Michael McClelland

ABSTRACT Six subspecies are currently recognized in Salmonella enterica. Subspecies I (subspecies enterica) is responsible for nearly all infections in humans and warm-blooded animals, while five other subspecies are isolated principally from cold-blooded animals. We sequenced 21 phylogenetically diverse strains, including two representatives from each of the previously unsequenced five subspecies and 11 diverse new strains from S. enterica subspecies enterica, to put this species into an evolutionary perspective. The phylogeny of the subspecies was partly obscured by abundant recombination events between lineages and a relatively short period of time within which subspeciation took place. Nevertheless, a variety of different tree-building methods gave congruent evolutionary tree topologies for subspeciation. A total of 285 gene families were identified that were recruited into subspecies enterica, and most of these are of unknown function. At least 2,807 gene families were identified in one or more of the other subspecies that are not found in subspecies I or Salmonella bongori. Among these gene families were 13 new candidate effectors and 7 new candidate fimbrial clusters. A third complete type III secretion system not present in subspecies enterica (I) isolates was found in both strains of subspecies salamae (II). Some gene families had complex taxonomies, such as the type VI secretion systems, which were recruited from four different lineages in five of six subspecies. Analysis of nonsynonymous-to-synonymous substitution rates indicated that the more-recently acquired regions in S. enterica are undergoing faster fixation rates than the rest of the genome. Recently acquired AT-rich regions, which often encode virulence functions, are under ongoing selection to maintain their high AT content. IMPORTANCE We have sequenced 21 new genomes which encompass the phylogenetic diversity of Salmonella, including strains of the previously unsequenced subspecies arizonae, diarizonae, houtenae, salamae, and indica as well as new diverse strains of subspecies enterica. We have deduced possible evolutionary paths traversed by this very important zoonotic pathogen and identified novel putative virulence factors that are not found in subspecies I. Gene families gained at the time of the evolution of subspecies enterica are of particular interest because they include mechanisms by which this subspecies adapted to warm-blooded hosts. IMPORTANCE We have sequenced 21 new genomes which encompass the phylogenetic diversity of Salmonella, including strains of the previously unsequenced subspecies arizonae, diarizonae, houtenae, salamae, and indica as well as new diverse strains of subspecies enterica. We have deduced possible evolutionary paths traversed by this very important zoonotic pathogen and identified novel putative virulence factors that are not found in subspecies I. Gene families gained at the time of the evolution of subspecies enterica are of particular interest because they include mechanisms by which this subspecies adapted to warm-blooded hosts.


PLOS ONE | 2014

Defined single-gene and multi-gene deletion mutant collections in Salmonella enterica sv Typhimurium.

Steffen Porwollik; Carlos A. Santiviago; Pui Cheng; Fred Long; Prerak T. Desai; Jennifer Fredlund; Shabarinath Srikumar; Cecilia A. Silva; Weiping Chu; Xin Chen; Rocío Canals; M. Megan Reynolds; Lydia M. Bogomolnaya; Christine Shields; Ping Cui; Jinbai Guo; Yi Zheng; Tiana Endicott-Yazdani; Hee-Jeong Yang; Aimee Maple; Yury Ragoza; Carlos J. Blondel; Camila Valenzuela; Helene Andrews-Polymenis; Michael McClelland

We constructed two collections of targeted single gene deletion (SGD) mutants and two collections of targeted multi-gene deletion (MGD) mutants in Salmonella enterica sv Typhimurium 14028s. The SGD mutant collections contain (1), 3517 mutants in which a single gene is replaced by a cassette containing a kanamycin resistance (KanR) gene oriented in the sense direction (SGD-K), and (2), 3376 mutants with a chloramphenicol resistance gene (CamR) oriented in the antisense direction (SGD-C). A combined total of 3773 individual genes were deleted across these SGD collections. The MGD collections contain mutants bearing deletions of contiguous regions of three or more genes and include (3), 198 mutants spanning 2543 genes replaced by a KanR cassette (MGD-K), and (4), 251 mutants spanning 2799 genes replaced by a CamR cassette (MGD-C). Overall, 3476 genes were deleted in at least one MGD collection. The collections with different antibiotic markers permit construction of all viable combinations of mutants in the same background. Together, the libraries allow hierarchical screening of MGDs for different phenotypic followed by screening of SGDs within the target MGD regions. The mutants of these collections are stored at BEI Resources (www.beiresources.org) and publicly available.


Nature Genetics | 2016

Distinct Salmonella Enteritidis lineages associated with enterocolitis in high-income settings and invasive disease in low-income settings

Nicholas A. Feasey; James Hadfield; Karen H. Keddy; Timothy J. Dallman; Jan Jacobs; Xiangyu Deng; Paul Wigley; Lars Barquist; Gemma C. Langridge; Theresa Feltwell; Simon R. Harris; Alison E. Mather; Maria Fookes; Martin Aslett; Chisomo L. Msefula; Samuel Kariuki; Calman A. MacLennan; Robert S. Onsare; F X Weill; Simon Le Hello; Anthony M. Smith; Michael McClelland; Prerak T. Desai; Christopher M. Parry; John S. Cheesbrough; Neil French; Josefina Campos; José A. Chabalgoity; Laura Betancor; Katie L. Hopkins

An epidemiological paradox surrounds Salmonella enterica serovar Enteritidis. In high-income settings, it has been responsible for an epidemic of poultry-associated, self-limiting enterocolitis, whereas in sub-Saharan Africa it is a major cause of invasive nontyphoidal Salmonella disease, associated with high case fatality. By whole-genome sequence analysis of 675 isolates of S. Enteritidis from 45 countries, we show the existence of a global epidemic clade and two new clades of S. Enteritidis that are geographically restricted to distinct regions of Africa. The African isolates display genomic degradation, a novel prophage repertoire, and an expanded multidrug resistance plasmid. S. Enteritidis is a further example of a Salmonella serotype that displays niche plasticity, with distinct clades that enable it to become a prominent cause of gastroenteritis in association with the industrial production of eggs and of multidrug-resistant, bloodstream-invasive infection in Africa.


Emerging Infectious Diseases | 2014

Genomic epidemiology of Salmonella enterica serotype Enteritidis based on population structure of prevalent lineages.

Xiangyu Deng; Prerak T. Desai; Henk C. den Bakker; Matthew Mikoleit; Beth Tolar; Eija Trees; Rene S. Hendriksen; Jonathan G. Frye; Steffen Porwollik; Bart C. Weimer; Martin Wiedmann; George M. Weinstock; Patricia I. Fields; Michael McClelland

Major lineages emerged during the 17th–18th centuries and diversified during the 1920s and 1950s.

Collaboration


Dive into the Prerak T. Desai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bart C. Weimer

University of California

View shared research outputs
Top Co-Authors

Avatar

Jonathan G. Frye

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Charlene R. Jackson

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lari M. Hiott

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Shaheen B. Humayoun

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Sushim K. Gupta

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge