Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bart N. Lambrecht is active.

Publication


Featured researches published by Bart N. Lambrecht.


Nature Medicine | 2009

House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells

Hamida Hammad; Marcello Chieppa; Frédéric Perros; Monique Willart; Ronald N. Germain; Bart N. Lambrecht

Barrier epithelial cells and airway dendritic cells (DCs) make up the first line of defense against inhaled substances such as house dust mite (HDM) allergen and endotoxin (lipopolysaccharide, LPS). We hypothesized that these cells need to communicate with each other to cause allergic disease. We show in irradiated chimeric mice that Toll-like receptor 4 (TLR4) expression on radioresistant lung structural cells, but not on DCs, is necessary and sufficient for DC activation in the lung and for priming of effector T helper responses to HDM. TLR4 triggering on structural cells caused production of the innate proallergic cytokines thymic stromal lymphopoietin, granulocyte-macrophage colony–stimulating factor, interleukin-25 and interleukin-33. The absence of TLR4 on structural cells, but not on hematopoietic cells, abolished HDM-driven allergic airway inflammation. Finally, inhalation of a TLR4 antagonist to target exposed epithelial cells suppressed the salient features of asthma, including bronchial hyperreactivity. Our data identify an innate immune function of airway epithelial cells that drives allergic inflammation via activation of mucosal DCs.


Journal of Experimental Medicine | 2004

Essential Role of Lung Plasmacytoid Dendritic Cells in Preventing Asthmatic Reactions to Harmless Inhaled Antigen

Hendrik Jan de Heer; Hamida Hammad; Thomas Soullié; Daniëlle Hijdra; Nanda Vos; Monique Willart; Henk C. Hoogsteden; Bart N. Lambrecht

Tolerance is the usual outcome of inhalation of harmless antigen, yet T helper (Th) type 2 cell sensitization to inhaled allergens induced by dendritic cells (DCs) is common in atopic asthma. Here, we show that both myeloid (m) and plasmacytoid (p) DCs take up inhaled antigen in the lung and present it in an immunogenic or tolerogenic form to draining node T cells. Strikingly, depletion of pDCs during inhalation of normally inert antigen led to immunoglobulin E sensitization, airway eosinophilia, goblet cell hyperplasia, and Th2 cell cytokine production, cardinal features of asthma. Furthermore, adoptive transfer of pDCs before sensitization prevented disease in a mouse asthma model. On a functional level, pDCs did not induce T cell division but suppressed the generation of effector T cells induced by mDCs. These studies show that pDCs provide intrinsic protection against inflammatory responses to harmless antigen. Therapies exploiting pDC function might be clinically effective in preventing the development of asthma.


Journal of Experimental Medicine | 2008

Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells

Mirjam Kool; Thomas Soullié; Menno van Nimwegen; Monique Willart; Femke Muskens; Steffen Jung; Henk C. Hoogsteden; Hamida Hammad; Bart N. Lambrecht

Alum (aluminum hydroxide) is the most widely used adjuvant in human vaccines, but the mechanism of its adjuvanticity remains unknown. In vitro studies showed no stimulatory effects on dendritic cells (DCs). In the absence of adjuvant, Ag was taken up by lymph node (LN)–resident DCs that acquired soluble Ag via afferent lymphatics, whereas after injection of alum, Ag was taken up, processed, and presented by inflammatory monocytes that migrated from the peritoneum, thus becoming inflammatory DCs that induced a persistent Th2 response. The enhancing effects of alum on both cellular and humoral immunity were completely abolished when CD11c+ monocytes and DCs were conditionally depleted during immunization. Mechanistically, DC-driven responses were abolished in MyD88-deficient mice and after uricase treatment, implying the induction of uric acid. These findings suggest that alum adjuvant is immunogenic by exploiting “natures adjuvant,” the inflammatory DC through induction of the endogenous danger signal uric acid.


Nature Reviews Immunology | 2008

Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma

Hamida Hammad; Bart N. Lambrecht

Dendritic cells (DCs) are generally held responsible for initiating and maintaining allergic T helper 2 (TH2)-cell responses to inhaled allergens in asthma. Although the epithelium was initially considered to function solely as a physical barrier, it is now seen as a central player in the TH2-cell sensitization process by influencing the function of DCs. Clinically relevant allergens, as well as known environmental and genetic risk factors for allergy and asthma, often interfere directly or indirectly with the innate immune functions of airway epithelial cells and DCs. A better understanding of these interactions, ascertained from human and animal studies, might lead to better prevention and treatment of asthma.


Journal of Clinical Investigation | 2000

Myeloid dendritic cells induce Th2 responses to inhaled antigen, leading to eosinophilic airway inflammation

Bart N. Lambrecht; Marijke de Veerman; Anthony J. Coyle; Jose-Carlos Gutierrez-Ramos; Kris Thielemans; Romain Pauwels

The aim of this study was to investigate whether dendritic cells (DCs) can induce sensitization to aeroallergen in a mouse model of allergic asthma. Ovalbumin-pulsed (OVA-pulsed) or unpulsed myeloid DCs that were injected into the airways of naive mice migrated into the mediastinal lymph nodes. When challenged 2 weeks later with an aerosol of OVA, activated CD4 and CD8 lymphocytes, eosinophils, and neutrophils were recruited to the lungs of actively immunized mice. These CD4(+) lymphocytes produced predominantly IL-4 and IL-5 but also IFN-gamma, whereas CD8(+) lymphocytes produced predominantly IFN-gamma. Histological analysis revealed perivascular and peribronchial eosinophilic infiltrates and goblet cell hyperplasia. Studies in IL-4(-/-) and CD28(-/-) mice revealed that production of IL-4 by host cells and provision of costimulation to T cells by DCs were critical for inducing the response. Lung CD4(+) T cells strongly expressed the Th2 marker T1/ST2, and signaling through this molecule via a ligand expressed on DCs was essential for the establishment of airway eosinophilia. These data demonstrate that DCs in the airways induce sensitization to inhaled antigen and that molecules expressed on the surface of these cells are critical for the development of Th2-dependent airway eosinophilia.


Nature Medicine | 2012

The airway epithelium in asthma.

Bart N. Lambrecht; Hamida Hammad

Asthma is a T lymphocyte–controlled disease of the airway wall caused by inflammation, overproduction of mucus and airway wall remodeling leading to bronchial hyperreactivity and airway obstruction. The airway epithelium is considered an essential controller of inflammatory, immune and regenerative responses to allergens, viruses and environmental pollutants that contribute to asthma pathogenesis. Epithelial cells express pattern recognition receptors that detect environmental stimuli and secrete endogenous danger signals, thereby activating dendritic cells and bridging innate and adaptive immunity. Improved understanding of the epitheliums function in maintaining the integrity of the airways and its dysfunction in asthma has provided important mechanistic insight into how asthma is initiated and perpetuated and could provide a framework by which to select new therapeutic strategies that prevent exacerbations and alter the natural course of the disease.


Journal of Experimental Medicine | 2010

Inflammatory dendritic cells—not basophils—are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen

Hamida Hammad; Maud Plantinga; Kim Deswarte; Philippe Pouliot; Monique Willart; Mirjam Kool; Femke Muskens; Bart N. Lambrecht

It is unclear how Th2 immunity is induced in response to allergens like house dust mite (HDM). Here, we show that HDM inhalation leads to the TLR4/MyD88-dependent recruitment of IL-4 competent basophils and eosinophils, and of inflammatory DCs to the draining mediastinal nodes. Depletion of basophils only partially reduced Th2 immunity, and depletion of eosinophils had no effect on the Th2 response. Basophils did not take up inhaled antigen, present it to T cells, or express antigen presentation machinery, whereas a population of FceRI+ DCs readily did. Inflammatory DCs were necessary and sufficient for induction of Th2 immunity and features of asthma, whereas basophils were not required. We favor a model whereby DCs initiate and basophils amplify Th2 immunity to HDM allergen.


Journal of Immunology | 2008

Cutting Edge: Alum Adjuvant Stimulates Inflammatory Dendritic Cells through Activation of the NALP3 Inflammasome

Mirjam Kool; Virginie Pétrilli; Thibaut De Smedt; Aline Rolaz; Hamida Hammad; Menno van Nimwegen; Ingrid M. Bergen; Rosa Castillo; Bart N. Lambrecht; Jürg Tschopp

Adjuvants are vaccine additives that stimulate the immune system without having any specific antigenic effect of itself. In this study we show that alum adjuvant induces the release of IL-1β from macrophages and dendritic cells and that this is abrogated in cells lacking various NALP3 inflammasome components. The NALP3 inflammasome is also required in vivo for the innate immune response to OVA in alum. The early production of IL-1β and the influx of inflammatory cells into the peritoneal cavity is strongly reduced in NALP3-deficient mice. The activation of adaptive cellular immunity to OVA-alum is initiated by monocytic dendritic cell precursors that induce the expansion of Ag-specific T cells in a NALP3-dependent way. We propose that, in addition to TLR stimulators, agonists of the NALP3 inflammasome should also be considered as vaccine adjuvants.


Nature Medicine | 2007

Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells

Marco Idzko; Hamida Hammad; Menno van Nimwegen; Mirjam Kool; Monique Willart; Femke Muskens; Henk C. Hoogsteden; Werner Luttmann; Davide Ferrari; Francesco Di Virgilio; J. Christian Virchow; Bart N. Lambrecht

Extracellular ATP serves as a danger signal to alert the immune system of tissue damage by acting on P2X or P2Y receptors. Here we show that allergen challenge causes acute accumulation of ATP in the airways of asthmatic subjects and mice with experimentally induced asthma. All the cardinal features of asthma, including eosinophilic airway inflammation, Th2 cytokine production and bronchial hyper-reactivity, were abrogated when lung ATP levels were locally neutralized using apyrase or when mice were treated with broad-spectrum P2-receptor antagonists. In addition to these effects of ATP in established inflammation, Th2 sensitization to inhaled antigen was enhanced by endogenous or exogenous ATP. The adjuvant effects of ATP were due to the recruitment and activation of lung myeloid dendritic cells that induced Th2 responses in the mediastinal nodes. Together these data show that purinergic signaling has a key role in allergen-driven lung inflammation that is likely to be amenable to therapeutic intervention.


Nature Immunology | 2015

The immunology of asthma

Bart N. Lambrecht; Hamida Hammad

Asthma is a common disease that affects 300 million people worldwide. Given the large number of eosinophils in the airways of people with mild asthma, and verified by data from murine models, asthma was long considered the hallmark T helper type 2 (TH2) disease of the airways. It is now known that some asthmatic inflammation is neutrophilic, controlled by the TH17 subset of helper T cells, and that some eosinophilic inflammation is controlled by type 2 innate lymphoid cells (ILC2 cells) acting together with basophils. Here we discuss results from in-depth molecular studies of mouse models in light of the results from the first clinical trials targeting key cytokines in humans and describe the extraordinary heterogeneity of asthma.

Collaboration


Dive into the Bart N. Lambrecht's collaboration.

Top Co-Authors

Avatar

Hamida Hammad

Erasmus University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Henk C. Hoogsteden

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Monique Willart

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Mirjam Kool

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Hamida Hammad

Erasmus University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kim Deswarte

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Femke Muskens

Erasmus University Rotterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge