Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sophie Janssens is active.

Publication


Featured researches published by Sophie Janssens.


Molecular Cell | 2003

Functional Diversity and Regulation of Different Interleukin-1 Receptor-Associated Kinase (IRAK) Family Members

Sophie Janssens; Rudi Beyaert

Interleukin-1 receptor-associated kinase (IRAK) was first described as a signal transducer for the proinflammatory cytokine interleukin-1 (IL-1) and was later implicated in signal transduction of other members of the Toll-like receptor (TLR)/IL-1 receptor (IL-1R) family. In the meantime, four different IRAK-like molecules have been identified: two active kinases, IRAK-1 and IRAK-4, and two inactive kinases, IRAK-2 and IRAK-M. All IRAKs mediate activation of nuclear factor-kappaB (NF-kappaB) and mitogen-activated protein kinase (MAPK) pathways. Although earlier observations suggested that IRAKs have redundant functions, this hypothesis is now challenged by knockout studies. Furthermore, recent data imply a role for IRAK-1 in tumor necrosis factor receptor (TNFR) superfamily-induced signaling pathways as well. The scope of this review is to highlight the specific role of different IRAKs and to discuss several mechanisms that contribute to their activation and regulation.


Journal of Experimental Medicine | 2003

Inhibition of Interleukin 1 Receptor/Toll-like Receptor Signaling through the Alternatively Spliced, Short Form of MyD88 Is Due to Its Failure to Recruit IRAK-4

Kimberly Burns; Sophie Janssens; Brian Brissoni; Natalia Olivos; Rudi Beyaert; Jürg Tschopp

Toll-like receptors (TLRs) and members of the proinflammatory interleukin 1 receptor (IL-1R) family are dependent on the presence of MyD88 for efficient signal transduction. The bipartite nature of MyD88 (N-terminal death domain [DD] and COOH-terminal Toll/IL-1 receptor [TIR] domain) allows it to link the TIR domain of IL-1R/TLR with the DD of the Ser/Thr kinase termed IL-1R–associated kinase (IRAK)-1. This triggers IRAK-1 phosphorylation and in turn the activation of multiple signaling cascades such as activation of the transcription factor nuclear factor (NF)-κB. In contrast, expression of MyD88 short (MyD88s), an alternatively spliced form of MyD88 that lacks only the short intermediate domain separating the DD and TIR domains, leads to a shutdown of IL-1/lipopolysaccharide-induced NF-κB activation. Here, we provide the molecular explanation for this difference. MyD88 but not MyD88s strongly interacts with IRAK-4, a newly identified kinase essential for IL-1R/TLR signaling. In the presence of MyD88s, IRAK-1 is not phosphorylated and neither activates NF-κB nor is ubiquitinated. Thus, MyD88s acts as a negative regulator of IL-1R/TLR/MyD88-triggered signals, leading to a transcriptionally controlled negative regulation of innate immune responses.


Clinical Microbiology Reviews | 2003

Role of Toll-Like Receptors in Pathogen Recognition

Sophie Janssens; Rudi Beyaert

SUMMARY The innate immune system relies on a vast array of non-clonally expressed pattern recognition receptors for the detection of pathogens. Pattern recognition receptors bind conserved molecular structures shared by large groups of pathogens, termed pathogen-associated molecular patterns. The Toll-like receptors (TLRs) are a recently discovered family of pattern recognition receptors which show homology with the Drosophila Toll protein and the human interleukin-1 receptor family. Engagement of different TLRs can induce overlapping yet distinct patterns of gene expression that contribute to an inflammatory response. The TLR family is characterized by the presence of leucine-rich repeats and a Toll/interleukin-1 receptor-like domain, which mediate ligand binding and interaction with intracellular signaling proteins, respectively. Most TLR ligands identified so far are conserved microbial products which signal the presence of an infection, but evidence for some endogenous ligands that might signal other danger conditions has also been obtained. Molecular mechanisms for pathogen-associated molecular pattern recognition still remain elusive but seem to be more complicated than initially anticipated. In most cases, direct binding of microbial ligands to TLRs still has to be demonstrated. Moreover, Drosophila TLRs bind endogenous ligands, generated through a proteolytic cascade in response to an infection. In the case of endotoxin, recognition involves a complex of TLR4 and a number of other proteins. Moreover, TLR heterodimerization further extends the spectrum of ligands and modulates the response towards specific ligands. The fact that TLR expression is regulated in both a cell type- and stimulus-dependent fashion further contributes to the complexity.


Journal of Medical Genetics | 2006

Emerging patterns of cryptic chromosomal imbalance in patients with idiopathic mental retardation and multiple congenital anomalies: a new series of 140 patients and review of published reports

B Menten; Nicole Maas; Bernard Thienpont; Karen Buysse; J Vandesompele; C Melotte; T. de Ravel; S. Van Vooren; Irina Balikova; Liesbeth Backx; Sophie Janssens; A. De Paepe; B. De Moor; Yves Moreau; Peter Marynen; Fryns Jp; Geert Mortier; Koenraad Devriendt; F. Speleman; J.R. Vermeesch

Background: Chromosomal abnormalities are a major cause of mental retardation and multiple congenital anomalies (MCA/MR). Screening for these chromosomal imbalances has mainly been done by standard karyotyping. Previous array CGH studies on selected patients with chromosomal phenotypes and normal karyotypes suggested an incidence of 10–15% of previously unnoticed de novo chromosomal imbalances. Objective: To report array CGH screening of a series of 140 patients (the largest published so far) with idiopathic MCA/MR but normal karyotype. Results: Submicroscopic chromosomal imbalances were detected in 28 of the 140 patients (20%) and included 18 deletions, seven duplications, and three unbalanced translocations. Seventeen of 24 imbalances were confirmed de novo and 19 were assumed to be causal. Excluding subtelomeric imbalances, our study identified 11 clinically relevant interstitial submicroscopic imbalances (8%). Taking this and previously reported studies into consideration, array CGH screening with a resolution of at least 1 Mb has been undertaken on 432 patients with MCA/MR. Most imbalances are non-recurrent and spread across the genome. In at least 8.8% of these patients (38 of 432) de novo intrachromosomal alterations have been identified. Conclusions: Array CGH should be considered an essential aspect of the genetic analysis of patients with MCA/MR. In addition, in the present study three patients were mosaic for a structural chromosome rearrangement. One of these patients had monosomy 7 in as few as 8% of the cells, showing that array CGH allows detection of low grade mosaicisims.


Trends in Biochemical Sciences | 2002

A universal role for MyD88 in TLR/IL-1R-mediated signaling

Sophie Janssens; Rudi Beyaert

The MyD88 adapter protein links members of the toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) superfamily to the downstream activation of nuclear factor-kappaB and mitogen-activated protein kinases. Although originally identified as a myeloid-differentiation marker, MyD88 is now known to play an essential role in the innate immune response of insects and mammals. The generation of MyD88-deficient mice, as well as the identification of MyD88-related proteins and regulators of MyD88 signaling, has revealed new and important insights into the function of MyD88.


Cell | 2005

PIDD Mediates NF-κB Activation in Response to DNA Damage

Sophie Janssens; Antoine Tinel; Saskia Lippens; Jürg Tschopp

Activation of NF-kappaB following genotoxic stress allows time for DNA-damage repair and ensures cell survival accounting for acquired chemoresistance, an impediment to effective cancer therapy. Despite this clinical relevance, little is known about pathways that enable genotoxic-stress-induced NF-kappaB induction. Previously, we reported a role for the p53-inducible death-domain-containing protein, PIDD, in caspase-2 activation and apoptosis in response to DNA damage. We now demonstrate that PIDD plays a critical role in DNA-damage-induced NF-kappaB activation. Upon genotoxic stress, a complex between PIDD, the kinase RIP1, and a component of the NF-kappaB-activating kinase complex, NEMO, is formed. PIDD expression enhances genotoxic-stress-induced NF-kappaB activation through augmented sumoylation and ubiquitination of NEMO. Depletion of PIDD and RIP1, but not caspase-2, abrogates DNA-damage-induced NEMO modification and NF-kappaB activation. We propose that PIDD acts as a molecular switch, controlling the balance between life and death upon DNA damage.


Current Biology | 2002

Regulation of Interleukin-1- and Lipopolysaccharide-Induced NF-κB Activation by Alternative Splicing of MyD88

Sophie Janssens; Kim Burns; Jürg Tschopp; Rudi Beyaert

MyD88 is an adaptor protein that is involved in interleukin-1 receptor (IL-1R)- and Toll-like receptor (TLR)-induced activation of NF-kappaB. It is composed of a C-terminal Toll/IL-1R homology (TIR) domain and an N-terminal death domain (DD), which mediate the interaction of MyD88 with the IL-1R/TLR and the IL-1R-associated kinase (IRAK), respectively. The interaction of MyD88 with IRAK triggers IRAK phosphorylation, which is essential for its activation and downstream signaling ability. Both domains of MyD88 are separated by a small intermediate domain (ID) of unknown function. Here, we report the identification of a splice variant of MyD88, termed MyD88(S), which encodes for a protein lacking the ID. MyD88(S) is mainly expressed in the spleen and can be induced in monocytes upon LPS treatment. Although MyD88(S) still binds the IL-1R and IRAK, it is defective in its ability to induce IRAK phosphorylation and NF-kappaB activation. In contrast, MyD88(S) behaves as a dominant-negative inhibitor of IL-1- and LPS-, but not TNF-induced, NF-kappaB activation. These results implicate the ID of MyD88 in the phosphorylation of IRAK. Moreover, the regulated expression and antagonistic activity of MyD88(S) suggest an important role for alternative splicing of MyD88 in the regulation of the cellular response to IL-1 and LPS.


Cell Death & Differentiation | 2006

Signals from within: the DNA-damage-induced NF-κB response

Sophie Janssens; Jürg Tschopp

An appropriate response to genotoxic stress is essential for maintenance of genome stability and avoiding the passage to neoplasia. Nuclear factor κB (NF-κB) is activated as part of the DNA damage response and is thought to orchestrate a cell survival pathway, which, together with the activation of cell cycle checkpoints and DNA repair, allows the cell in cases of limited damage to restore a normal life cycle, unharmed. In this respect, NF-κB is one of the main factors accounting for chemotherapy resistance and as such impedes effective cancer treatment, representing an important drug target. Despite this high clinical relevance, signalling cascades leading to DNA damage-induced NF-κB activation are poorly understood and the use of highly divergent experimental set-ups in the past led to many controversies in the field. Therefore, in this review, we will try to summarize the current knowledge of distinct DNA damage-induced NF-κB signalling pathways.


Journal of Experimental Medicine | 2008

Stimulation of Toll-like receptor 3 and 4 induces interleukin-1β maturation by caspase-8

Jonathan Maelfait; Elisabeth Vercammen; Sophie Janssens; Peter Schotte; Mira Haegman; Stefan Magez; Rudi Beyaert

The cytokine interleukin (IL)-1β is a key mediator of the inflammatory response and has been implicated in the pathophysiology of acute and chronic inflammation. IL-1β is synthesized in response to many stimuli as an inactive pro–IL-1β precursor protein that is further processed by caspase-1 into mature IL-1β, which is the secreted biologically active form of the cytokine. Although stimulation of membrane-bound Toll-like receptors (TLRs) up-regulates pro–IL-1β expression, activation of caspase-1 is believed to be mainly initiated by cytosolic Nod-like receptors. In this study, we show that polyinosinic:polycytidylic acid (poly[I:C]) and lipopolysaccharide stimulation of macrophages induces pro–IL-1β processing via a Toll/IL-1R domain–containing adaptor-inducing interferon-β–dependent signaling pathway that is initiated by TLR3 and TLR4, respectively. Ribonucleic acid interference (RNAi)–mediated knockdown of the intracellular receptors NALP3 or MDA5 did not affect poly(I:C)-induced pro–IL-1β processing. Surprisingly, poly(I:C)- and LPS-induced pro–IL-1β processing still occurred in caspase-1–deficient cells. In contrast, pro–IL-1β processing was inhibited by caspase-8 peptide inhibitors, CrmA or vFLIP expression, and caspase-8 knockdown via RNAi, indicating an essential role for caspase-8. Moreover, recombinant caspase-8 was able to cleave pro–IL-1β in vitro at exactly the same site as caspase-1. These results implicate a novel role for caspase-8 in the production of biologically active IL-1β in response to TLR3 and TLR4 stimulation.


FEBS Letters | 2003

MyD88S, a splice variant of MyD88, differentially modulates NF-κB- and AP-1-dependent gene expression

Sophie Janssens; Kim Burns; Elisabeth Vercammen; Jürg Tschopp; Rudi Beyaert

MyD88 is an adapter protein that is involved in Toll‐like receptor (TLR)‐ and interleukin‐1 receptor (IL‐1R)‐induced activation of nuclear factor‐κB (NF‐κB) and c‐Jun N‐terminal kinase (JNK). By directly binding IL‐1R‐associated kinase (IRAK)‐1 and IRAK‐4, MyD88 serves as a bridging protein, enabling IRAK‐4‐induced IRAK‐1 phosphorylation. We previously identified a lipopolysaccharide‐inducible splice variant of MyD88, MyD88S, which specifically prevents the recruitment of IRAK‐4 into the IL‐1R complex and thus inhibits IRAK‐4‐mediated IRAK‐1 phosphorylation. MyD88S is not able to activate NF‐κB, and in contrast functions as a dominant negative inhibitor of TLR/IL‐1R‐induced NF‐κB activation. Unexpectedly, we here demonstrate that MyD88S still allows JNK phosphorylation and activator protein (AP)‐1‐dependent reporter gene induction upon overexpression in HEK293T cells. These observations indicate that NF‐κB and JNK activation pathways can already diverge at the level of MyD88. Moreover, the regulated expression of a MyD88 splice variant which specifically interferes with NF‐κB‐ but not AP‐1‐dependent gene expression implies an important role for alternative splicing in the fine‐tuning of TLR/IL‐1R responses.

Collaboration


Dive into the Sophie Janssens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge