Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bart Tambuyzer is active.

Publication


Featured researches published by Bart Tambuyzer.


Journal of Leukocyte Biology | 2009

Microglia: gatekeepers of central nervous system immunology

Bart Tambuyzer; Peter Ponsaerts; Etienne J. Nouwen

Microglia are perhaps the most underestimated cell type of our immune system. Not only were immunologists unaware of their capabilities until recently, but also, some neuroscientists denied their actual existence until the late 20th century. Nowadays, their presence is confirmed extensively, as demonstrated by numerous reports describing their involvement in virtually all neuropathologies. However, despite distinct approaches, their origin remains a point of controversy. Although many agree about their myeloid‐monocytic ancestry, the precise progenitor cells and the differentiation mechanisms, which give rise to microglia in the different developmental stages of the CNS, are not unraveled yet. Mostly, this can be attributed to their versatile phenotype. Indeed, microglia show a high morphological plasticity, which is related to their functional state. This review about microglia aims to introduce the reader extensively into their ontogeny, cell biology, and involvement in different neuropathologies.


BMC Biotechnology | 2009

Reporter gene-expressing bone marrow-derived stromal cells are immune-tolerated following implantation in the central nervous system of syngeneic immunocompetent mice

Irene Bergwerf; Nathalie De Vocht; Bart Tambuyzer; Jacob Verschueren; Kristien Reekmans; Jasmijn Daans; Abdelilah Ibrahimi; Viggo Van Tendeloo; Shyama Chatterjee; Herman Goossens; Philippe G. Jorens; Veerle Baekelandt; Dirk Ysebaert; Eric Van Marck; Zwi N. Berneman; Annemie Van der Linden; Peter Ponsaerts

BackgroundCell transplantation is likely to become an important therapeutic tool for the treatment of various traumatic and ischemic injuries to the central nervous system (CNS). However, in many pre-clinical cell therapy studies, reporter gene-assisted imaging of cellular implants in the CNS and potential reporter gene and/or cell-based immunogenicity, still remain challenging research topics.ResultsIn this study, we performed cell implantation experiments in the CNS of immunocompetent mice using autologous (syngeneic) luciferase-expressing bone marrow-derived stromal cells (BMSC-Luc) cultured from ROSA26-L-S-L-Luciferase transgenic mice, and BMSC-Luc genetically modified using a lentivirus encoding the enhanced green fluorescence protein (eGFP) and the puromycin resistance gene (Pac) (BMSC-Luc/eGFP/Pac). Both reporter gene-modified BMSC populations displayed high engraftment capacity in the CNS of immunocompetent mice, despite potential immunogenicity of introduced reporter proteins, as demonstrated by real-time bioluminescence imaging (BLI) and histological analysis at different time-points post-implantation. In contrast, both BMSC-Luc and BMSC-Luc/eGFP/Pac did not survive upon intramuscular cell implantation, as demonstrated by real-time BLI at different time-points post-implantation. In addition, ELISPOT analysis demonstrated the induction of IFN-γ-producing CD8+ T-cells upon intramuscular cell implantation, but not upon intracerebral cell implantation, indicating that BMSC-Luc and BMSC-Luc/eGFP/Pac are immune-tolerated in the CNS. However, in our experimental transplantation model, results also indicated that reporter gene-specific immune-reactive T-cell responses were not the main contributors to the immunological rejection of BMSC-Luc or BMSC-Luc/eGFP/Pac upon intramuscular cell implantation.ConclusionWe here demonstrate that reporter gene-modified BMSC derived from ROSA26-L-S-L-Luciferase transgenic mice are immune-tolerated upon implantation in the CNS of syngeneic immunocompetent mice, providing a research model for studying survival and localisation of autologous BMSC implants in the CNS by real-time BLI and/or histological analysis in the absence of immunosuppressive therapy.


Immunology and Cell Biology | 2009

Allogeneic stromal cell implantation in brain tissue leads to robust microglial activation

Bart Tambuyzer; Irene Bergwerf; Nathalie De Vocht; Kristien Reekmans; Jasmijn Daans; Philippe G. Jorens; Herman Goossens; Dirk Ysebaert; Shyama Chatterjee; Eric Van Marck; Zwi N. Berneman; Peter Ponsaerts

Although adult and embryonic stem cell‐based therapy for central nervous system (CNS) injury is being developed worldwide, less attention is given to the immunological aspects of allogeneic cell implantation in the CNS. The latter is of major importance because, from a practical point of view, future stem cell‐based therapy for CNS injury will likely be performed using well‐characterised allogeneic stem cell populations. In this study, we aimed to further describe the immunological mechanism leading to rejection of allogeneic bone marrow‐derived stromal cells (BM‐SC) after implantation in murine CNS. For this, we first investigated the impact of autologous and allogeneic BM‐SC on microglia activation in vitro. Although the results indicate that both autologous and allogeneic BM‐SC do not activate microglia themselves in vitro, they also do not inhibit activation of microglia after exogenous stimuli in vitro. Next, we investigated the impact of allogeneic BM‐SC on microglia activation in vivo. In contrast to the in vitro observations, microglia become highly activated in vivo after implantation of allogeneic BM‐SC in the CNS of immune‐competent mice. Moreover, our results suggest that microglia, rather than T‐cells, are the major contributors to allograft rejection in the CNS.


Cell Transplantation | 2011

Clinical potential of intravenous neural stem cell delivery for treatment of neuroinflammatory disease in mice

Kristien Reekmans; Jelle Praet; Nathalie De Vocht; Bart Tambuyzer; Irene Bergwerf; Jasmijn Daans; Veerle Baekelandt; Greetje Vanhoutte; Herman Goossens; Philippe G. Jorens; Dirk Ysebaert; Shyama Chatterjee; Patrick Pauwels; Eric Van Marck; Zwi N. Berneman; Annemie Van der Linden; Peter Ponsaerts

While neural stem cells (NSCs) are widely expected to become a therapeutic agent for treatment of severe injuries to the central nervous system (CNS), currently there are only few detailed preclinical studies linking cell fate with experimental outcome. In this study, we aimed to validate whether IV administration of allogeneic NSC can improve experimental autoimmune encephalomyelitis (EAE), a well-established animal model for human multiple sclerosis (MS). For this, we cultured adherently growing luciferase-expressing NSCs (NSC-Luc), which displayed a uniform morphology and expression profile of membrane and intracellular markers, and which displayed an in vitro differentiation potential into neurons and astrocytes. Following labeling with green fluorescent micron-sized iron oxide particles (f-MPIO-labeled NSC-Luc) or lentiviral transduction with the enhanced green fluorescent protein (eGFP) reporter gene (NSC-Luc/eGFP), cell implantation experiments demonstrated the intrinsic survival capacity of adherently cultured NSC in the CNS of syngeneic mice, as analyzed by real-time bioluminescence imaging (BLI), magnetic resonance imaging (MRI), and histological analysis. Next, EAE was induced in C57BL/6 mice followed by IV administration of NSC-Luc/eGFP at day 7 postinduction with or without daily immunosuppressive therapy (cyclosporine A, CsA). During a follow-up period of 20 days, the observed clinical benefit could be attributed solely to CsA treatment. In addition, histological analysis demonstrated the absence of NSC-Luc/eGFP at sites of neuroinflammation. In order to investigate the absence of therapeutic potential, BLI biodistribution analysis of IV-administered NSC-Luc/eGFP revealed cell retention in lung capillaries as soon as 1-min postinjection, resulting in massive inflammation and apoptosis in lung tissue. In summary, we conclude that IV administration of NSCs currently has limited or no therapeutic potential for neuroinflammatory disease in mice, and presumably also for human MS. However, given the fact that grafted NSCs have an intrinsic survival capacity in the CNS, their therapeutic exploitation should be further investigated, and—in contrast to several other reports—will most likely be highly complex.


Cell Transplantation | 2012

Cell type-associated differences in migration, survival, and immunogenicity following grafting in CNS tissue.

Jelle Praet; Kristien Reekmans; Dan Lin; Nathalie De Vocht; Irene Bergwerf; Bart Tambuyzer; Jasmijn Daans; Niel Hens; Herman Goossens; Patrick Pauwels; Zwi N. Berneman; Annemie Van der Linden; Peter Ponsaerts

Cell transplantation has been suggested to display several neuroprotective and/or neuroregenerative effects in animal models of central nervous system (CNS) trauma. However, while most studies report on clinical observations, currently little is known regarding the actual fate of the cell populations grafted and whether or how the brains innate immune system, mainly directed by activated microglia and astrocytes, interacts with autologous cellular implants. In this study, we grafted well-characterized neural stem cell, mouse embryonic fibroblast, dendritic cell, bone marrow mononuclear cell, and splenocyte populations, all isolated or cultured from C57BL/6-eGFP transgenic mice, below the capsula externa (CE) of healthy C57BL/6 mice and below the inflamed/demyelinated CE of cuprizone-treated C57BL/6 mice. Two weeks postgrafting, an extensive quantitative multicolor histological analysis was performed in order (i) to quantify cell graft localization, migration, survival, and toxicity and (ii) to characterize endogenous CNS immune responses against the different cell grafts. Obtained results indicate dependence on the cell type grafted: (i) a different degree of cell graft migration, survival, and toxicity and (ii) a different organization of the endogenous immune response. Based on these observations, we warrant that further research should be undertaken to understand—and eventually control—cell graft-induced tissue damage and activation of the brains innate immune system. The latter will be inevitable before cell grafting in the CNS can be performed safely and successfully in clinical settings.


Immunology and Cell Biology | 2011

Recognition of cellular implants by the brain's innate immune system.

Irene Bergwerf; Bart Tambuyzer; Nathalie De Vocht; Kristien Reekmans; Jelle Praet; Jasmijn Daans; Shyama Chatterjee; Patrick Pauwels; Annemie Van der Linden; Zwi N. Berneman; Peter Ponsaerts

Currently, much attention is given to the development of cellular therapies for treatment of central nervous system (CNS) injuries. Diverse cell implantation strategies, either to directly replace damaged neural tissue or to create a neuroregenerative environment, are proposed to restore impaired brain function. However, because of the complexity of the CNS, it is now becoming clear that the contribution of cell implantation into the brain will mainly act in a supportive manner. In addition, given the time dependence of neural development during embryonic and post‐natal life, cellular implants, either self or non‐self, will most likely have to interact for a sustained period of time with both healthy and injured neural tissue. The latter also implies potential recognition of cellular implants by the innate immune system of the brain. In this review, we will emphasize on preclinical observations in rodents, regarding the recognition and immunogenicity of autologous, allogeneic and xenogeneic cellular implants in the CNS of immune‐competent hosts. Taken together, we here suggest that a profound study of the interaction between cellular grafts and the brains innate immune system will be inevitable before clinical cell transplantation in the CNS can be performed successfully.


PLOS ONE | 2015

Trolox and Ascorbic Acid Reduce Direct and Indirect Oxidative Stress in the IPEC-J2 Cells, an In Vitro Model for the Porcine Gastrointestinal Tract

Hans Vergauwen; Bart Tambuyzer; Karen Jennes; Jeroen Degroote; Wei Wang; Stefaan De Smet; Joris Michiels; Chris Van Ginneken

Oxidative stress in the small intestinal epithelium is a major cause of barrier malfunction and failure to regenerate. This study presents a functional in vitro model using the porcine small intestinal epithelial cell line IPEC-J2 to examine the effects of oxidative stress and to estimate the antioxidant and regenerative potential of Trolox, ascorbic acid and glutathione monoethyl ester. Hydrogen peroxide and diethyl maleate affected the tight junction (zona occludens-1) distribution, significantly increased intracellular oxidative stress (CM-H2DCFDA) and decreased the monolayer integrity (transepithelial electrical resistance and FD-4 permeability), viability (neutral red) and wound healing capacity (scratch assay). Trolox (2 mM) and 1 mM ascorbic acid pre-treatment significantly reduced intracellular oxidative stress, increased wound healing capacity and reduced FD-4 permeability in oxidatively stressed IPEC-J2 cell monolayers. All antioxidant pre-treatments increased transepithelial electrical resistance and viability only in diethyl maleate-treated cells. Glutathione monoethyl ester (10 mM) pre-treatment significantly decreased intracellular oxidative stress and monolayer permeability only in diethyl maleate-treated cells. These data demonstrate that the IPEC-J2 oxidative stress model is a valuable tool to screen antioxidants before validation in piglets.


Animal | 2014

Enteric and serological distribution of serotonin and its precursor tryptophan in perinatal low and normal weight piglets

S. Willemen; Lianqiang Che; Sylvia Dewilde; M. L. Van Hauwaert; M. De Vos; V. Huygelen; Erik Fransen; Bart Tambuyzer; Christophe Casteleyn; S. Van Cruchten; C. Van Ginneken

Perinatal mortality is high among small-for-gestational age (SGA) piglets and continues to be an economic burden and threat to animal welfare. As the physiological role of serotonin (5-hydroxytryptamine, 5-HT) in perinatal development and gastrointestinal function in the pig remains unknown, the aim of this study was to assess the enteric distribution of 5-HT cells and to determine 5-HT together with its precursor tryptophan in the serum of perinatal normal and SGA piglets. For this purpose, proximal and distal parts of the small intestine (SI) were processed for immunohistochemical analysis to assess the presence of 5-HT endocrine cells. Serum 5-HT was measured with ELISA, whereas its precursor, that is, the free fraction of tryptophan (FFT) together with albumin-bound tryptophan and total tryptophan, were analysed with HPLC in postnatal piglets. In addition, the morphological growth patterns of the different intestinal tissue layers of both normal and SGA piglets were stereologically analysed. The stereological volume density of 5-HT enteroendocrine cells showed a significant interaction effect between age and region. Indeed, the amount of 5-HT cells in both the proximal and distal part of the SI tended to decrease according to age, with the lowest values detected at day 3 postpartum. No differences could be observed related to BW. Interestingly, the serum concentration of 5-HT was higher in normal piglets compared with SGA piglets. Moreover, the ratio of FFT to total tryptophan was significantly affected by age and BW. Normal piglets had, on average, a lower FFT/total tryptophan ratio compared with SGA piglets. An approximate linear decrease was observed with increasing age. Finally, the immaturity of the intestinal system of the SGA piglets was not reflected in altered volume densities of the different intestinal layers. To conclude, although no BW effect could be detected in the distribution of enteric 5-HT cells, serum 5-HT and the ratio of FFT to total tryptophan ratio showed significant differences between normal piglets and their SGA littermates.


Journal of Animal Science | 2012

Increased intestinal barrier function in the small intestine of formula-fed neonatal piglets

V. Huygelen; M. De Vos; S. Willemen; Bart Tambuyzer; Christophe Casteleyn; Dries Knapen; S. Van Cruchten; C. Van Ginneken

Within-litter birth weight variation is adversely correlated to piglet survival and postnatal growth. A less efficient epithelial barrier function in light piglets may partly explain this inverse relationship between birth weight and zootechnical performance. A compromised epithelial barrier increases paracellular permeability; consequently, toxins, allergenic compounds, or bacteria may enter systemic circulation and induce inflammatory responses. Dietary effects on function of gut epithelium of piglet are largely unknown. This study investigated epithelial barrier function of the small intestine of normal birth weight (NBW) piglets (1.46 ± 0.10 kg) and low birth weight (LBW) piglets (<1 kg at birth) in relation to their diet. Sixteen pairs of 3-d-old LBW and NBW piglets were randomly assigned to 3 groups: a sow-fed control group euthanized at day 3 of age (SOW3), piglets sow fed until day 10 (SOW10), and formula-fed piglets fed formula from day 3 until day 10 (FOR10). To measure gut permeability, piglets were dosed intragastrically with 0.75 g lactulose/kg BW and 0.3 g mannitol/kg BW 4 h before euthanasia. Urinary sugar excretion was measured using enzymatic spectrophotometry. Irrespective of birth weight, lactulose levels of FOR10 (4.4 ± 2.3 mmol/L) tended to be lower (P = 0.07) than SOW10 (26.4 ± 10.2 mmol/L) indicating a reduced paracellular intestinal permeability in FOR10. This reduction was associated with a 6-fold elevated (P < 0.01) protein expression of occludin, an important tight junction protein, in FOR10 compared to SOW10. Mannitol levels in FOR10 (31.0 ± 18.2 mmol/L) did not differ (P = 0.28) from SOW10 (61.1 ± 10.2 mmol/L). However, shorter villi (P < 0.01) in FOR10 indicated a reduced absorptive capacity. In conclusion, formula feeding caused minor symptoms of gastrointestinal dysfunction compared to sow-fed piglets irrespective of their birth weight.


Cell Biology International | 2012

Osteopontin alters the functional profile of porcine microglia in vitro

Bart Tambuyzer; Christophe Casteleyn; Hans Vergauwen; Steven Van Cruchten; Chris Van Ginneken

OPN (osteopontin) is a secreted glycoprotein predominantly expressed in bone matrix and kidney tissue. More recently, a neuroprotective role has been attributed to this cytokine since it can be up‐regulated by microglia in neurodegeneration and inflammation. We demonstrate the expression of OPN within primary cultured microglia. Microglia incubated in vitro with different concentrations (0.1 fM–1 nM) of recombinant OPN showed increased proliferation at 10 fM. Moreover, conditioned medium of LLC‐PK1 cells, a pig renal epithelial cell line and a known source of secreted OPN, more than doubled the rate of proliferation of microglia. Addition of an anti‐OPN polyclonal antibody completely reversed this effect. Treatment with OPN dose‐dependently also inhibited microglial superoxide production. In contrast, phagocytosis of fluorescent‐labelled beads was enhanced by OPN. In conclusion, OPN shifts microglia, at least in vitro, to an alternative functional profile more fit to the immune‐balanced microenvironment of the CNS (central nervous system).

Collaboration


Dive into the Bart Tambuyzer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge