Kristien Reekmans
University of Antwerp
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kristien Reekmans.
BMC Biotechnology | 2009
Irene Bergwerf; Nathalie De Vocht; Bart Tambuyzer; Jacob Verschueren; Kristien Reekmans; Jasmijn Daans; Abdelilah Ibrahimi; Viggo Van Tendeloo; Shyama Chatterjee; Herman Goossens; Philippe G. Jorens; Veerle Baekelandt; Dirk Ysebaert; Eric Van Marck; Zwi N. Berneman; Annemie Van der Linden; Peter Ponsaerts
BackgroundCell transplantation is likely to become an important therapeutic tool for the treatment of various traumatic and ischemic injuries to the central nervous system (CNS). However, in many pre-clinical cell therapy studies, reporter gene-assisted imaging of cellular implants in the CNS and potential reporter gene and/or cell-based immunogenicity, still remain challenging research topics.ResultsIn this study, we performed cell implantation experiments in the CNS of immunocompetent mice using autologous (syngeneic) luciferase-expressing bone marrow-derived stromal cells (BMSC-Luc) cultured from ROSA26-L-S-L-Luciferase transgenic mice, and BMSC-Luc genetically modified using a lentivirus encoding the enhanced green fluorescence protein (eGFP) and the puromycin resistance gene (Pac) (BMSC-Luc/eGFP/Pac). Both reporter gene-modified BMSC populations displayed high engraftment capacity in the CNS of immunocompetent mice, despite potential immunogenicity of introduced reporter proteins, as demonstrated by real-time bioluminescence imaging (BLI) and histological analysis at different time-points post-implantation. In contrast, both BMSC-Luc and BMSC-Luc/eGFP/Pac did not survive upon intramuscular cell implantation, as demonstrated by real-time BLI at different time-points post-implantation. In addition, ELISPOT analysis demonstrated the induction of IFN-γ-producing CD8+ T-cells upon intramuscular cell implantation, but not upon intracerebral cell implantation, indicating that BMSC-Luc and BMSC-Luc/eGFP/Pac are immune-tolerated in the CNS. However, in our experimental transplantation model, results also indicated that reporter gene-specific immune-reactive T-cell responses were not the main contributors to the immunological rejection of BMSC-Luc or BMSC-Luc/eGFP/Pac upon intramuscular cell implantation.ConclusionWe here demonstrate that reporter gene-modified BMSC derived from ROSA26-L-S-L-Luciferase transgenic mice are immune-tolerated upon implantation in the CNS of syngeneic immunocompetent mice, providing a research model for studying survival and localisation of autologous BMSC implants in the CNS by real-time BLI and/or histological analysis in the absence of immunosuppressive therapy.
Stem Cell Reviews and Reports | 2012
Kristien Reekmans; Jelle Praet; Jasmijn Daans; Veerle Reumers; Patrick Pauwels; Annemie Van der Linden; Zwi N. Berneman; Peter Ponsaerts
Transplantation of neural stem cells (NSC) is hoped to become a promising primary or secondary therapy for the treatment of various neurodegenerative disorders of the central nervous system (CNS), as demonstrated by multiple pre-clinical animal studies in which functional recovery has already been demonstrated. However, for NSC therapy to be successful, the first challenge will be to define a transplantable cell population. In the first part of this review, we will briefly discuss the main features of ex vivo culture and characterisation of NSC. Next, NSC grafting itself may not only result in the regeneration of lost tissue, but more importantly has the potential to improve functional outcome through many bystander mechanisms. In the second part of this review, we will briefly discuss several pre-clinical studies that contributed to a better understanding of the therapeutic potential of NSC grafts in vivo. However, while many pre-clinical animal studies mainly report on the clinical benefit of NSC grafting, little is known about the actual in vivo fate of grafted NSC. Therefore, the third part of this review will focus on non-invasive imaging techniques for monitoring cellular grafts in the brain under in vivo conditions. Finally, as NSC transplantation research has evolved during the past decade, it has become clear that the host micro-environment itself, either in healthy or injured condition, is an important player in defining success of NSC grafting. The final part of this review will focus on the host environmental influence on survival, migration and differentiation of grafted NSC.
Allergy | 2010
Wouter Huvenne; Ina Callebaut; Kristien Reekmans; Greet Hens; Sonja Bobic; Mark Jorissen; Dominique Bullens; Jan Ceuppens; Claus Bachert; Peter Hellings
To cite this article: Huvenne W, Callebaut I, Reekmans K, Hens G, Bobic S, Jorissen M, Bullens DMA, Ceuppens JL, Bachert C, Hellings PW. Staphylococcus aureus enterotoxin B augments granulocyte migration and survival via airway epithelial cell activation. Allergy 2010; 65: 1013–1020.
Immunology and Cell Biology | 2009
Bart Tambuyzer; Irene Bergwerf; Nathalie De Vocht; Kristien Reekmans; Jasmijn Daans; Philippe G. Jorens; Herman Goossens; Dirk Ysebaert; Shyama Chatterjee; Eric Van Marck; Zwi N. Berneman; Peter Ponsaerts
Although adult and embryonic stem cell‐based therapy for central nervous system (CNS) injury is being developed worldwide, less attention is given to the immunological aspects of allogeneic cell implantation in the CNS. The latter is of major importance because, from a practical point of view, future stem cell‐based therapy for CNS injury will likely be performed using well‐characterised allogeneic stem cell populations. In this study, we aimed to further describe the immunological mechanism leading to rejection of allogeneic bone marrow‐derived stromal cells (BM‐SC) after implantation in murine CNS. For this, we first investigated the impact of autologous and allogeneic BM‐SC on microglia activation in vitro. Although the results indicate that both autologous and allogeneic BM‐SC do not activate microglia themselves in vitro, they also do not inhibit activation of microglia after exogenous stimuli in vitro. Next, we investigated the impact of allogeneic BM‐SC on microglia activation in vivo. In contrast to the in vitro observations, microglia become highly activated in vivo after implantation of allogeneic BM‐SC in the CNS of immune‐competent mice. Moreover, our results suggest that microglia, rather than T‐cells, are the major contributors to allograft rejection in the CNS.
Cell Transplantation | 2011
Kristien Reekmans; Jelle Praet; Nathalie De Vocht; Bart Tambuyzer; Irene Bergwerf; Jasmijn Daans; Veerle Baekelandt; Greetje Vanhoutte; Herman Goossens; Philippe G. Jorens; Dirk Ysebaert; Shyama Chatterjee; Patrick Pauwels; Eric Van Marck; Zwi N. Berneman; Annemie Van der Linden; Peter Ponsaerts
While neural stem cells (NSCs) are widely expected to become a therapeutic agent for treatment of severe injuries to the central nervous system (CNS), currently there are only few detailed preclinical studies linking cell fate with experimental outcome. In this study, we aimed to validate whether IV administration of allogeneic NSC can improve experimental autoimmune encephalomyelitis (EAE), a well-established animal model for human multiple sclerosis (MS). For this, we cultured adherently growing luciferase-expressing NSCs (NSC-Luc), which displayed a uniform morphology and expression profile of membrane and intracellular markers, and which displayed an in vitro differentiation potential into neurons and astrocytes. Following labeling with green fluorescent micron-sized iron oxide particles (f-MPIO-labeled NSC-Luc) or lentiviral transduction with the enhanced green fluorescent protein (eGFP) reporter gene (NSC-Luc/eGFP), cell implantation experiments demonstrated the intrinsic survival capacity of adherently cultured NSC in the CNS of syngeneic mice, as analyzed by real-time bioluminescence imaging (BLI), magnetic resonance imaging (MRI), and histological analysis. Next, EAE was induced in C57BL/6 mice followed by IV administration of NSC-Luc/eGFP at day 7 postinduction with or without daily immunosuppressive therapy (cyclosporine A, CsA). During a follow-up period of 20 days, the observed clinical benefit could be attributed solely to CsA treatment. In addition, histological analysis demonstrated the absence of NSC-Luc/eGFP at sites of neuroinflammation. In order to investigate the absence of therapeutic potential, BLI biodistribution analysis of IV-administered NSC-Luc/eGFP revealed cell retention in lung capillaries as soon as 1-min postinjection, resulting in massive inflammation and apoptosis in lung tissue. In summary, we conclude that IV administration of NSCs currently has limited or no therapeutic potential for neuroinflammatory disease in mice, and presumably also for human MS. However, given the fact that grafted NSCs have an intrinsic survival capacity in the CNS, their therapeutic exploitation should be further investigated, and—in contrast to several other reports—will most likely be highly complex.
Cell Transplantation | 2012
Jelle Praet; Kristien Reekmans; Dan Lin; Nathalie De Vocht; Irene Bergwerf; Bart Tambuyzer; Jasmijn Daans; Niel Hens; Herman Goossens; Patrick Pauwels; Zwi N. Berneman; Annemie Van der Linden; Peter Ponsaerts
Cell transplantation has been suggested to display several neuroprotective and/or neuroregenerative effects in animal models of central nervous system (CNS) trauma. However, while most studies report on clinical observations, currently little is known regarding the actual fate of the cell populations grafted and whether or how the brains innate immune system, mainly directed by activated microglia and astrocytes, interacts with autologous cellular implants. In this study, we grafted well-characterized neural stem cell, mouse embryonic fibroblast, dendritic cell, bone marrow mononuclear cell, and splenocyte populations, all isolated or cultured from C57BL/6-eGFP transgenic mice, below the capsula externa (CE) of healthy C57BL/6 mice and below the inflamed/demyelinated CE of cuprizone-treated C57BL/6 mice. Two weeks postgrafting, an extensive quantitative multicolor histological analysis was performed in order (i) to quantify cell graft localization, migration, survival, and toxicity and (ii) to characterize endogenous CNS immune responses against the different cell grafts. Obtained results indicate dependence on the cell type grafted: (i) a different degree of cell graft migration, survival, and toxicity and (ii) a different organization of the endogenous immune response. Based on these observations, we warrant that further research should be undertaken to understand—and eventually control—cell graft-induced tissue damage and activation of the brains innate immune system. The latter will be inevitable before cell grafting in the CNS can be performed safely and successfully in clinical settings.
Immunobiology | 2013
Nathalie De Vocht; Dan Lin; Jelle Praet; Chloé Hoornaert; Kristien Reekmans; Debbie Le Blon; Jasmijn Daans; Patrick Pauwels; Herman Goossens; Niel Hens; Zwi N. Berneman; Annemie Van der Linden; Peter Ponsaerts
Although cell transplantation is increasingly suggested to be beneficial for the treatment of various neurodegenerative diseases, the therapeutic application of such intervention is currently hindered by the limited knowledge regarding central nervous system (CNS) transplantation immunology. In this study, we aimed to investigate the early post transplantation innate immune events following grafting of autologous mesenchymal stromal cells (MSC) in the CNS of immune competent mice. First, the survival of grafted Luciferase/eGFP-expressing MSC (MSC-Luc/eGFP) was demonstrated to be stable from on day 3 post implantation using in vivo bioluminescence imaging (BLI), which was further confirmed by quantitative histological analysis of MSC-Luc/eGFP graft survival. Additional histological analyses at week 1 and week 2 post grafting revealed the appearance of (i) graft-surrounding/-invading Iba1+ microglia and (ii) graft-surrounding GFAP+ astrocytes, as compared to day 0 post grafting. While the density of graft-surrounding astrocytes and microglia did not change between week 1 and week 2 post grafting, the density of graft-invading microglia significantly decreased between week 1 and week 2 post implantation. However, despite the observed decrease in microglial density within the graft site, additional phenotypic analysis of graft-invading microglia, based on CD11b- and MHCII-expression, revealed >50% of graft-invading microglia at week 2 post implantation to display an activated status. Although microglial expression of CD11b and MHCII is already suggestive for a pro-inflammatory M1-oriented phenotype, the latter was further confirmed by: (i) the expression of NOS2 by microglia within the graft site, and (ii) the absence of arginase 1-expression, an enzyme known to suppress NO activity in M2-oriented microglia, on graft-surrounding and -invading microglia. In summary, we here provide a detailed phenotypic analysis of post transplantation innate immune events in the CNS of mice, and warrant that such intervention is associated with an M1-oriented microglia response and severe astrogliosis.
Immunology and Cell Biology | 2011
Irene Bergwerf; Bart Tambuyzer; Nathalie De Vocht; Kristien Reekmans; Jelle Praet; Jasmijn Daans; Shyama Chatterjee; Patrick Pauwels; Annemie Van der Linden; Zwi N. Berneman; Peter Ponsaerts
Currently, much attention is given to the development of cellular therapies for treatment of central nervous system (CNS) injuries. Diverse cell implantation strategies, either to directly replace damaged neural tissue or to create a neuroregenerative environment, are proposed to restore impaired brain function. However, because of the complexity of the CNS, it is now becoming clear that the contribution of cell implantation into the brain will mainly act in a supportive manner. In addition, given the time dependence of neural development during embryonic and post‐natal life, cellular implants, either self or non‐self, will most likely have to interact for a sustained period of time with both healthy and injured neural tissue. The latter also implies potential recognition of cellular implants by the innate immune system of the brain. In this review, we will emphasize on preclinical observations in rodents, regarding the recognition and immunogenicity of autologous, allogeneic and xenogeneic cellular implants in the CNS of immune‐competent hosts. Taken together, we here suggest that a profound study of the interaction between cellular grafts and the brains innate immune system will be inevitable before clinical cell transplantation in the CNS can be performed successfully.
Biomaterials | 2015
Jorrit De Waele; Kristien Reekmans; Jasmijn Daans; Herman Goossens; Zwi N. Berneman; Peter Ponsaerts
Transplantation of neural stem cells (NSC) in diseased or injured brain tissue is widely studied as a potential treatment for various neurological pathologies. However, effective cell replacement therapy relies on the intrinsic capacity of cellular grafts to overcome hypoxic and/or immunological barriers after transplantation. In this context, it is hypothesized that structural support for grafted NSC will be of utmost importance. With this study, we present a novel decellularization protocol for 1.5 mm thick mouse brain sections, resulting in the generation of acellular three-dimensional (3D) brain sections. Next, the obtained 3D brain sections were seeded with murine NSC expressing both the eGFP and luciferase reporter proteins (NSC-eGFP/Luc). Using real-time bioluminescence imaging, the survival and growth of seeded NSC-eGFP/Luc cells was longitudinally monitored for 1-7 weeks in culture, indicating the ability of the acellular brain sections to support sustained ex vivo growth of NSC. Next, the organization of a 3D maze-like cellular structure was examined using confocal microscopy. Moreover, under mitogenic stimuli (EGF and hFGF-2), most cells in this 3D culture retained their NSC phenotype. Concluding, we here present a novel protocol for decellularization of mouse brain sections, which subsequently support long-term 3D culture of undifferentiated NSC.
Stem Cell Research & Therapy | 2012
Kristien Reekmans; Nathalie De Vocht; Jelle Praet; Erik Fransen; Debbie Le Blon; Chloé Hoornaert; Jasmijn Daans; Herman Goossens; Annemie Van der Linden; Zwi N. Berneman; Peter Ponsaerts
IntroductionTransplantation of neural stem cells (NSCs) is increasingly suggested to become part of future therapeutic approaches to improve functional outcome of various central nervous system disorders. However, recently it has become clear that only a small fraction of grafted NSCs display long-term survival in the (injured) adult mouse brain. Given the clinical invasiveness of NSC grafting into brain tissue, profound characterisation and understanding of early post-transplantation events is imperative to claim safety and efficacy of cell-based interventions.MethodsHere, we applied in vivo bioluminescence imaging (BLI) and post-mortem quantitative histological analysis to determine the localisation and survival of grafted NSCs at early time points post-transplantation.ResultsAn initial dramatic cell loss (up to 80% of grafted cells) due to apoptosis could be observed within the first 24 hours post-implantation, coinciding with a highly hypoxic NSC graft environment. Subsequently, strong spatiotemporal microglial and astroglial cell responses were initiated, which stabilised by day 5 post-implantation and remained present during the whole observation period. Moreover, the increase in astrocyte density was associated with a high degree of astroglial scarring within and surrounding the graft site. During the two-week follow up in this study, the NSC graft site underwent extensive remodelling with NSC graft survival further declining to around 1% of the initial number of grafted cells.ConclusionsThe present study quantitatively describes the early post-transplantation events following NSC grafting in the adult mouse brain and warrants that such intervention is directly associated with a high degree of cell loss, subsequently followed by strong glial cell responses.