Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barth D. Grant is active.

Publication


Featured researches published by Barth D. Grant.


Nature Reviews Molecular Cell Biology | 2009

Pathways and mechanisms of endocytic recycling.

Barth D. Grant; Julie G. Donaldson

Endocytic recycling is coordinated with endocytic uptake to control the composition of the plasma membrane. Although much of our understanding of endocytic recycling has come from studies on the transferrin receptor, a protein internalized through clathrin-dependent endocytosis, increased interest in clathrin-independent endocytosis has led to the discovery of new endocytic recycling systems. Recent insights into the regulatory mechanisms that control endocytic recycling have focused on recycling through tubular carriers and the return to the cell surface of cargoes that enter cells through clathrin-independent mechanisms. Recent work emphasizes the importance of regulated recycling in processes as diverse as cytokinesis, cell adhesion, morphogenesis, cell fusion, learning and memory.


Nature Cell Biology | 2007

Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic

Zita Balklava; Saumya Pant; Hanna Fares; Barth D. Grant

In a genome-wide RNA-mediated interference screen for genes required in membrane traffic — including endocytic uptake, recycling from endosomes to the plasma membrane, and secretion — we identified 168 candidate endocytosis regulators and 100 candidate secretion regulators. Many of these candidates are highly conserved among metazoans but have not been previously implicated in these processes. Among the positives from the screen, we identified PAR-3, PAR-6, PKC-3 and CDC-42, proteins that are well known for their importance in the generation of embryonic and epithelial-cell polarity. Further analysis showed that endocytic transport in Caenorhabditis elegans coelomocytes and human HeLa cells was also compromised after perturbation of CDC-42/Cdc42 or PAR-6/Par6 function, indicating a general requirement for these proteins in regulating endocytic traffic. Consistent with these results, we found that tagged CDC-42/Cdc42 is enriched on recycling endosomes in C. elegans and mammalian cells, suggesting a direct function in the regulation of transport.


Nature Cell Biology | 2001

Rme-1 regulates the distribution and function of the endocytic recycling compartment in mammalian cells

Sharron X. Lin; Barth D. Grant; David Hirsh; Frederick R. Maxfield

RME-1 is an Eps15-homology (EH)-domain protein that was identified in a genetic screen for endocytosis genes in Caenorhabditis elegans. When expressed in a CHO cell line, the worm RME-1 protein and a mouse homologue are both associated with the endocytic recycling compartment. Here we show that expression of a dominant-negative construct with a point mutation near the EH domain results in redistribution of the endocytic recycling compartment and slowing down of transferrin receptor recycling. The delivery of a TGN38 chimaeric protein to the trans-Golgi network is also slowed down. The function of Rme-1 in endocytic recycling is evolutionarily conserved in metazoans as shown by the proteins properties in C. elegans.


Nature Cell Biology | 2001

Evidence that RME-1, a conserved C. elegans EH-domain protein, functions in endocytic recycling.

Barth D. Grant; Yinhua Zhang; Marie-Christine Paupard; Sharron X. Lin; David H. Hall; David Hirsh

In genetic screens for new endocytosis genes in Caenorhabditis elegans we identified RME-1, a member of a conserved class of Eps15-homology (EH)-domain proteins. Here we show that RME-1 is associated with the periphery of endocytic organelles, which is consistent with a direct role in endocytic transport. Endocytic defects in rme-1 mutants indicate that the protein is likely to have a function in endocytic recycling. Evidence from studies of mammalian RME-1 also points to a function for RME-1 in recycling, specifically in the exit of membrane proteins from recycling endosomes. These studies show a conserved function in endocytic recycling for the RME-1 family of EH proteins.


Nature Cell Biology | 2009

AMPH-1/Amphiphysin/Bin1 functions with RME-1/Ehd1 in endocytic recycling.

Saumya Pant; Mahak Sharma; Kruti Patel; Steve Caplan; Chavela M. Carr; Barth D. Grant

RME-1/EHD1 (receptor mediated endocytosis/Eps15 homology-domain containing 1) family proteins are key residents of the recycling endosome, which are required for endosome-to-plasma membrane transport in Caenorhabditis elegans and mammals. Recent studies suggest similarities between the RME-1/EHD proteins and the Dynamin GTPase superfamily of mechanochemical pinchases, which promote membrane fission. Here we show that endogenous C. elegans AMPH-1, the only C. elegans member of the Amphiphysin/BIN1 family of BAR (Bin1-Amphiphysin-Rvs161p/167p)-domain-containing proteins, colocalizes with RME-1 on recycling endosomes in vivo, that amph-1-deletion mutants are defective in recycling endosome morphology and function, and that binding of AMPH-1 Asn-Pro-Phe(Asp/Glu) sequences to the RME-1 EH-domain promotes the recycling of transmembrane cargo. We also show a requirement for human BIN1 (also known as Amphiphysin 2) in EHD1-regulated endocytic recycling. In vitro, we find that purified recombinant AMPH-1–RME-1 complexes produce short, coated membrane tubules that are qualitatively distinct from those produced by either protein alone. Our results indicate that AMPH-1 and RME-1 cooperatively regulate endocytic recycling, probably through functions required for the production of cargo carriers that exit the recycling endosome for the cell surface.


Nature Cell Biology | 2005

Caenorhabditis elegans RME-6 is a novel regulator of RAB-5 at the clathrin-coated pit

Miyuki Sato; Ken Sato; Paul Fonarev; Chih-Jen Huang; Willisa Liou; Barth D. Grant

Here we identify a new regulator of endocytosis called RME-6. RME-6 is evolutionarily conserved among metazoans and contains Ras-GAP (GTPase-activating protein)-like and Vps9 domains. Consistent with the known catalytic function of Vps9 domains in Rab5 GDP/GTP exchange, we found that RME-6 binds specifically to Caenorhabditis elegans RAB-5 in the GDP-bound conformation, and rme-6 mutants have phenotypes that indicate low RAB-5 activity. However, unlike other Rab5-associated proteins, a rescuing green fluorescent protein (GFP)–RME-6 fusion protein primarily localizes to clathrin-coated pits, physically interacts with α-adaptin, a clathrin adaptor protein, and requires clathrin to achieve its cortical localization. In rme-6 mutants, transport from the plasma membrane to endosomes is defective, and small 110-nm endocytic vesicles accumulate just below the plasma membrane. These results suggest a mechanism for the activation of Rab5 in clathrin-coated pits or clathrin-coated vesicles that is essential for the delivery of endocytic cargo to early endosomes.


The EMBO Journal | 2008

Regulation of endocytic recycling by C. elegans Rab35 and its regulator RME-4, a coated-pit protein

Miyuki Sato; Ken Sato; Willisa Liou; Saumya Pant; Akihiro Harada; Barth D. Grant

Using Caenorhabditis elegans genetic screens, we identified receptor‐mediated endocytosis (RME)‐4 and RME‐5/RAB‐35 as important regulators of yolk endocytosis in vivo. In rme‐4 and rab‐35 mutants, yolk receptors do not accumulate on the plasma membrane as would be expected in an internalization mutant, rather the receptors are lost from cortical endosomes and accumulate in dispersed small vesicles, suggesting a defect in receptor recycling. Consistent with this, genetic tests indicate the RME‐4 and RAB‐35 function downstream of clathrin, upstream of RAB‐7, and act synergistically with recycling regulators RAB‐11 and RME‐1. We find that RME‐4 is a conserved DENN domain protein that binds to RAB‐35 in its GDP‐loaded conformation. GFP–RME‐4 also physically interacts with AP‐2, is enriched on clathrin‐coated pits, and requires clathrin but not RAB‐5 for cortical association. GFP–RAB‐35 localizes to the plasma membrane and early endocytic compartments but is lost from endosomes in rme‐4 mutants. We propose that RME‐4 functions on coated pits and/or vesicles to recruit RAB‐35, which in turn functions in the endosome to promote receptor recycling.


Traffic | 2008

Mechanisms of EHD/RME-1 protein function in endocytic transport

Barth D. Grant; Steve Caplan

The evolutionarily conserved Eps15 homology domain (EHD)/receptor‐mediated endocytosis (RME)‐1 family of C‐terminal EH domain proteins has recently come under intense scrutiny because of its importance in intracellular membrane transport, especially with regard to the recycling of receptors from endosomes to the plasma membrane. Recent studies have shed new light on the mode by which these adenosine triphosphatases function on endosomal membranes in mammals and Caenorhabditis elegans. This review highlights our current understanding of the physiological roles of these proteins in vivo, discussing conserved features as well as emerging functional differences between individual mammalian paralogs. In addition, these findings are discussed in light of the identification of novel EHD/RME‐1 protein and lipid interactions and new structural data for proteins in this family, indicating intriguing similarities to the Dynamin superfamily of large guanosine triphosphatases.


The EMBO Journal | 2009

Regulation of endosomal clathrin and retromer-mediated endosome to Golgi retrograde transport by the J-domain protein RME-8

Anbing Shi; Lin Sun; Riju Banerjee; Michael Tobin; Yinhua Zhang; Barth D. Grant

After endocytosis, most cargo enters the pleiomorphic early endosomes in which sorting occurs. As endosomes mature, transmembrane cargo can be sequestered into inwardly budding vesicles for degradation, or can exit the endosome in membrane tubules for recycling to the plasma membrane, the recycling endosome, or the Golgi apparatus. Endosome to Golgi transport requires the retromer complex. Without retromer, recycling cargo such as the MIG‐14/Wntless protein aberrantly enters the degradative pathway and is depleted from the Golgi. Endosome‐associated clathrin also affects the recycling of retrograde cargo and has been shown to function in the formation of endosomal subdomains. Here, we find that the Caemorhabditis elegans endosomal J‐domain protein RME‐8 associates with the retromer component SNX‐1. Loss of SNX‐1, RME‐8, or the clathrin chaperone Hsc70/HSP‐1 leads to over‐accumulation of endosomal clathrin, reduced clathrin dynamics, and missorting of MIG‐14 to the lysosome. Our results indicate a mechanism, whereby retromer can regulate endosomal clathrin dynamics through RME‐8 and Hsc70, promoting the sorting of recycling cargo into the retrograde pathway.


Current Biology | 2011

The P4-ATPase TAT-5 inhibits the budding of extracellular vesicles in C. elegans embryos

Ann M. Wehman; Corey Poggioli; Peter Schweinsberg; Barth D. Grant; Jeremy Nance

BACKGROUND Cells release extracellular vesicles (ECVs) that can influence differentiation, modulate the immune response, promote coagulation, and induce metastasis. Many ECVs form by budding outwards from the plasma membrane, but the molecules that regulate budding are unknown. In ECVs, the outer leaflet of the membrane bilayer contains aminophospholipids that are normally sequestered to the inner leaflet of the plasma membrane, suggesting a role for lipid asymmetry in ECV budding. RESULTS We show that loss of the conserved P4-ATPase TAT-5 causes the large-scale shedding of ECVs and disrupts cell adhesion and morphogenesis in Caenorhabditis elegans embryos. TAT-5 localizes to the plasma membrane and its loss results in phosphatidylethanolamine exposure on cell surfaces. We show that RAB-11 and endosomal sorting complex required for transport (ESCRT) proteins, which regulate the topologically analogous process of viral budding, are enriched at the plasma membrane in tat-5 embryos, and are required for ECV production. CONCLUSIONS TAT-5 is the first protein identified to regulate ECV budding. TAT-5 provides a potential molecular link between loss of phosphatidylethanolamine asymmetry and the dynamic budding of vesicles from the plasma membrane, supporting the hypothesis that lipid asymmetry regulates budding. Our results also suggest that viral budding and ECV budding may share common molecular mechanisms.

Collaboration


Dive into the Barth D. Grant's collaboration.

Top Co-Authors

Avatar

Ken Sato

National Defense Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anbing Shi

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David H. Hall

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge