Anne Norris
Rutgers University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anne Norris.
Genome Research | 2009
Hailiang Huang; Alexandra Maertens; Edel M. Hyland; Junbiao Dai; Anne Norris; Jef D. Boeke; Joel S. Bader
Histones are the basic protein components of nucleosomes. They are among the most conserved proteins and are subject to a plethora of post-translational modifications. Specific histone residues are important in establishing chromatin structure, regulating gene expression and silencing, and responding to DNA damage. Here we present HistoneHits, a database of phenotypes for systematic collections of histone mutants. This database combines assay results (phenotypes) with information about sequences, structures, post-translational modifications, and evolutionary conservation. The web interface presents the information through dynamic tables and figures. It calculates the availability of data for specific mutants and for nucleosome surfaces. The database currently includes 42 assays on 677 mutants multiply covering 405 of the 498 residues across yeast histones H3, H4, H2A, and H2B. We also provide an interface with an extensible controlled vocabulary for research groups to submit new data. Preliminary analyses confirm that mutations at highly conserved residues and modifiable residues are more likely to generate phenotypes. Buried residues and residues on the lateral surface tend to generate more phenotypes, while tail residues generate significantly fewer phenotypes than other residues. Yeast mutants are cross referenced with known human histone variants, identifying a position where a yeast mutant causes loss of ribosomal silencing and a human variant increases breast cancer susceptibility. All data sets are freely available for download.
PLOS Genetics | 2008
Anne Norris; Mario A. Bianchet; Jef D. Boeke
The previously identified LRS (Loss of rDNA Silencing) domain of the nucleosome is critically important for silencing at both ribosomal DNA and telomeres. To understand the function of the LRS surface in silencing, we performed an EMS mutagenesis screen to identify suppressors of the H3 A75V LRS allele. We identified dominant and recessive mutations in histones H3, H4, and dominant mutations in the BAH (Bromo Adjacent Homology) domain of SIR3. We further characterized a surface of Sir3p critical for silencing via the LRS surface. We found that all alleles of the SIR3 BAH domain were able to 1) generally suppress the loss of telomeric silencing of LRS alleles, but 2) could not suppress SIN (Swi/Snf Independent) alleles or 3) could not suppress the telomeric silencing defect of H4 tail alleles. Moreover, we noticed a complementary trend in the electrostatic changes resulting from most of the histone mutations that gain or lose silencing and the suppressor alleles isolated in SIR3, and the genes for histones H3 and H4. Mutations in H3 and H4 genes that lose silencing tend to make the LRS surface more electronegative, whereas mutations that increase silencing make it less electronegative. Conversely, suppressors of LRS alleles in either SIR3, histone H3, or H4 also tend to make their respective surfaces less electronegative. Our results provide genetic evidence for recent data suggesting that the Sir3p BAH domain directly binds the LRS domain. Based on these findings, we propose an electrostatic model for how an extensive surface on the Sir3p BAH domain may regulate docking onto the LRS surface.
Molecular and Cellular Biology | 2006
Christopher J. Fry; Anne Norris; Michael S. Cosgrove; Jef D. Boeke; Craig L. Peterson
ABSTRACT Genetic experiments have identified two structurally similar nucleosomal domains, SIN and LRS, required for transcriptional repression at genes regulated by the SWI/SNF chromatin remodeling complex or for heterochromatic gene silencing, respectively. Each of these domains consists of histone H3 and H4 L1 and L2 loops that form a DNA-binding surface at either superhelical location (SHL) ±2.5 (LRS) or SHL ±0.5 (SIN). Here we show that alterations in the LRS domain do not result in Sin− phenotypes, nor does disruption of the SIN domain lead to loss of ribosomal DNA heterochromatic gene silencing (Lrs− phenotype). Furthermore, whereas disruption of the SIN domain eliminates intramolecular folding of nucleosomal arrays in vitro, alterations in the LRS domain have no effect on chromatin folding in vitro. In contrast to these dissimilarities, we find that the SIN and LRS domains are both required for recruitment of Sir2p and Sir4p to telomeric and silent mating type loci, suggesting that both surfaces can contribute to heterochromatin formation. Our study shows that structurally similar nucleosomal surfaces provide distinct functionalities in vivo and in vitro.
Wormbook | 2014
Ken Sato; Anne Norris; Miyuki Sato; Barth D. Grant
The counterbalancing action of the endocytosis and secretory pathways maintains a dynamic equilibrium that regulates the composition of the plasma membrane, allowing it to maintain homeostasis and to change rapidly in response to alterations in the extracellular environment and/or intracellular metabolism. These pathways are intimately integrated with intercellular signaling systems and play critical roles in all cells. Studies in Caenorhabditis elegans have revealed diverse roles of membrane trafficking in physiology and development and have also provided molecular insight into the fundamental mechanisms that direct cargo sorting, vesicle budding, and membrane fisson and fusion. In this review, we summarize progress in understanding membrane trafficking mechanisms derived from work in C. elegans, focusing mainly on work done in non-neuronal cell-types, especially the germline, early embryo, coelomocytes, and intestine.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Anne Norris; Prasad Tammineni; Simon Wang; Julianne Gerdes; Alexandra Murr; Kelvin Y. Kwan; Qian Cai; Barth D. Grant
Significance Endosomes are membrane-bound organelles that are important for nutrient uptake, protein and lipid sorting, and signal transduction. When integral membrane proteins have reached the endosomal system, they can be sent to the lysosome for degradation or recycled for reuse. Here we provide insight into how the machinery important for reuse controls the machinery that mediates degradation. We show that these opposing functions occupy physically distinct regions of the endosomes, termed microdomains, and that this separation is likely to provide a physical framework for a variety of sorting decisions. After endocytosis, transmembrane cargo reaches endosomes, where it encounters complexes dedicated to opposing functions: recycling and degradation. Microdomains containing endosomal sorting complexes required for transport (ESCRT)-0 component Hrs [hepatocyte growth factor-regulated tyrosine kinase substrate (HGRS-1) in Caenorhabditis elegans] mediate cargo degradation, concentrating ubiquitinated cargo and organizing the activities of ESCRT. At the same time, retromer associated sorting nexin one (SNX-1) and its binding partner, J-domain protein RME-8, sort cargo away from degradation, promoting cargo recycling to the Golgi. Thus, we hypothesized that there could be important regulatory interactions between retromer and ESCRT that balance degradative and recycling functions. Taking advantage of the naturally large endosomes of the C. elegans coelomocyte, we visualized complementary ESCRT-0 and RME-8/SNX-1 microdomains in vivo and assayed the ability of retromer and ESCRT microdomains to regulate one another. We found in snx-1(0) and rme-8(ts) mutants increased endosomal coverage and intensity of HGRS-1–labeled microdomains, as well as increased total levels of HGRS-1 bound to membranes. These effects are specific to SNX-1 and RME-8, as loss of other retromer components SNX-3 and vacuolar protein sorting-associated protein 35 (VPS-35) did not affect HGRS-1 microdomains. Additionally, knockdown of hgrs-1 had little to no effect on SNX-1 and RME-8 microdomains, suggesting directionality to the interaction. Separation of the functionally distinct ESCRT-0 and SNX-1/RME-8 microdomains was also compromised in the absence of RME-8 and SNX-1, a phenomenon we observed to be conserved, as depletion of Snx1 and Snx2 in HeLa cells also led to greater overlap of Rme-8 and Hrs on endosomes.
Genetics | 2010
Junbiao Dai; Edel M. Hyland; Anne Norris; Jef D. Boeke
In budding yeast, silent chromatin is defined at the region of telomeres, rDNA loci, and silent mating loci. Although the silent chromatin at different loci shows structural similarity, the underlying mechanism to establish, maintain, and inherit these structures may be fundamentally different. In this study, we found two arginine residues within histone H2B, which are specifically required to maintain either the telomeric or the rDNA silenct chromatin. Arginine 95 (R95) plays a specific role at telomeres, whereas arginine 102 (R102) is required to maintain the silent chromatin at rDNA and to ensure the integrity of rDNA loci by suppressing recombination between rDNA repeats. R95 mutants show enhanced rDNA silencing but a paradoxically low Sir2 protein abundance. Furthermore weakened silencing at telomeres in R95 mutants can be suppressed by a specific SIR3 allele, SIR3–D205N, which increases the affinity of Sir proteins to telomeres, suggesting H2B–R95 may directly mediate telomeric Sir protein–nucleosome interactions. Double mutations of R95 and R102 lead to desilencing of both rDNA and telomeres, indicating both arginines are necessary to ensure integrity of silent chromatin at these loci. Furthermore, mutations of R102 cause accumulation of extrachromosomal rDNA circles and reduce life span, suggesting that histone H2B contributes to longevity.
Proceedings of the National Academy of Sciences of the United States of America | 2000
Jeffrey K. Ichikawa; Anne Norris; M. Gita Bangera; Gary K. Geiss; Angélique B. van 't Wout; Roger E. Bumgarner; Stephen Lory
Proceedings of the National Academy of Sciences of the United States of America | 1964
Anne Norris; Paul Berg
Genes & Development | 2010
Anne Norris; Jef D. Boeke
Molecular Biology of the Cell | 2018
Junbing Zhang; Jinchao Liu; Anne Norris; Barth D. Grant; Xiaochen Wang