Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bartłomiej Pochwat is active.

Publication


Featured researches published by Bartłomiej Pochwat.


Pharmacological Reports | 2013

Zinc as a marker of affective disorders

Marcin Siwek; Bernadeta Szewczyk; Dominika Dudek; Krzysztof Styczeń; Magdalena Sowa-Kućma; Katarzyna Młyniec; Agata Siwek; Leszek Witkowski; Bartłomiej Pochwat; Gabriel Nowak

Depression is considered as a chronic and recurring illness with functional impairment, significant disability, morbidity and mortality. Despite the extensive research carried out on depression, its pathophysiology is still poorly understood. An important problem concerning research into depressive disorder is the lack of biological markers which could improve diagnosis or indicate a risk of developing depression or risk of relapse. Several reports indicated decreased zinc concentrations and even its deficit in clinical depression, so the measurement of the concentration of this element in the blood of patients was suggested as a useful and specific clinical marker of depression. The reported results indicated that the serum zinc level might be a marker of depression as a state (state marker) in treatment responsive patients. However, in drug-resistant depression a decreased concentration of zinc may be a marker of traits (trait marker). It seems, however, that the measurement of the concentrations of zinc might be in the future a component of the battery of tests; of markers of immune activation and oxidative stress rather than itself alone.


The International Journal of Neuropsychopharmacology | 2014

Antidepressant-like activity of magnesium in the chronic mild stress model in rats: alterations in the NMDA receptor subunits.

Bartłomiej Pochwat; Bernadeta Szewczyk; Magdalena Sowa-Kućma; Agata Siwek; Urszula Doboszewska; Wojciech Piekoszewski; Piotr Gruca; Mariusz Papp; Gabriel Nowak

Recent data suggests that the glutamatergic system is involved in the pathophysiology and treatment of major depressive disorder (MDD) and that the N-methyl-D-aspartate (NMDA) receptor is a potential target for antidepressant drugs. The magnesium ion blocks the ion channel of the NMDA receptor and prevents its excessive activation. Some preclinical and clinical evidence suggests also that magnesium may be useful in the treatment of depression. The present study investigated the effect of magnesium treatment (10, 15 and 20 mg/kg, given as magnesium hydroaspartate) in the chronic mild stress (CMS) model of depression in rats. Moreover, the effect of CMS and magnesium (with an effective dose) on the level of the proteins related to the glutamatergic system (GluN1, GluN2A, GluN2B and PSD-95) in the hippocampus, prefrontal cortex (PFC) and amygdala were examined. A significant reduction in the sucrose intake induced by CMS was increased by magnesium treatment at a dose of 15 mg/kg, beginning from the third week of administration. Magnesium did not affect this behavioural parameter in the control animals. CMS significantly increased the level of the GluN1 subunit in the amygdala (by 174%) and GluN2A in the hippocampus (by 191%), both of which were significantly attenuated by magnesium treatment. Moreover, magnesium treatment in CMS animals increased the level of GluN2B (by 116%) and PSD-95 (by 150%) in the PFC. The present results for the first time demonstrate the antidepressant-like activity of magnesium in the animal model of anhedonia (CMS), thus indicating the possible involvement of the NMDA/glutamatergic receptors in this activity.


Expert Opinion on Investigational Drugs | 2014

NMDA antagonists under investigation for the treatment of major depressive disorder

Bartłomiej Pochwat; Agnieszka Pałucha-Poniewiera; Bernadeta Szewczyk; Andrzej Pilc; Gabriel Nowak

Introduction: Mood disorders, including depression, are becoming increasingly prevalent in the developed world. Furthermore, treatment of depression therapeutics, mainly influencing the serotonergic and adrenergic systems, is considered insufficient. The original NMDA-glutamate hypothesis mechanism of antidepressant action was first proposed ∼ 20 years ago. Since then, a number of preclinical and clinical studies have examined its rationale. Areas covered: This review highlights the recent clinical evidence for the use of functional NMDA receptor antagonists as antidepressants. Furthermore, the authors present the mechanism(s) of antidepressant action derived mostly from preclinical paradigms. Expert opinion: Currently, clinical studies mostly use ketamine (a noncompetitive high-potency NMDA antagonist) as an agent for rapid relief of depressive symptoms. However, due to the ketamine-induced psychotomimetic effects, new NMDA receptor antagonists (modulators) are continuously being introduced for rapid antidepressant action, especially for use in treatment-resistant patients. Recent clinical reports for the use of CP-101,606, MK-0657 (selective GluN2B subunit NMDA receptor antagonists), GLYX-13 and d-cycloserine (glycine site partial agonists) are optimistic but await further support.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2015

Zinc deficiency in rats is associated with up-regulation of hippocampal NMDA receptor

Urszula Doboszewska; Magdalena Sowa-Kućma; Katarzyna Młyniec; Bartłomiej Pochwat; Małgorzata Hołuj; Beata Ostachowicz; Andrzej Pilc; Gabriel Nowak; Bernadeta Szewczyk

RATIONALE Data indicated that zinc deficiency may contribute to the development of depression; however changes induced by zinc deficiency are not fully described. OBJECTIVES In the present paper we tested whether the dietary zinc restriction in rats causes alterations in N-methyl-D-aspartate receptor (NMDAR) subunits in brain regions that are relevant to depression. METHODS Male Sprague Dawley rats were fed a zinc adequate diet (ZnA, 50 mg Zn/kg) or a zinc deficient diet (ZnD, 3 mg Zn/kg) for 4 or 6weeks. Then, the behavior of the rats was examined in the forced swim test, sucrose intake test and social interaction test. Western blot assays were used to study the alterations in NMDAR subunits GluN2A and GluN2B and proteins associated with NMDAR signaling in the hippocampus (Hp) and prefrontal cortex (PFC). RESULTS Following 4 or 6 weeks of zinc restriction, behavioral despair, anhedonia and a reduction of social behavior occurred in rats with concomitant increased expression of GluN2A and GluN2B and decreased expression of the PSD-95, p-CREB and BDNF protein levels in the Hp. The up-regulation of GluN2A protein was also found in the PFC, but only after prolonged (6 weeks) zinc deprivation. CONCLUSIONS The procedure of zinc restriction in rats causes behavioral changes that share some similarities to the pathophysiology of depression. Obtained data indicated that depressive-like behavior induced by zinc deficiency is associated with the changes in NMDAR signaling pathway.


Neural Plasticity | 2015

Relationship between Zinc (Zn (2+) ) and Glutamate Receptors in the Processes Underlying Neurodegeneration.

Bartłomiej Pochwat; Gabriel Nowak; Bernadeta Szewczyk

The results from numerous studies have shown that an imbalance between particular neurotransmitters may lead to brain circuit dysfunction and development of many pathological states. The significance of glutamate pathways for the functioning of the nervous system is equivocal. On the one hand, glutamate transmission is necessary for neuroplasticity, synaptogenesis, or cell survival, but on the other hand an excessive and long-lasting increased level of glutamate in the synapse may lead to cell death. Under clinical conditions, hyperactivity of the glutamate system is associated with ischemia, epilepsy, and neurodegenerative diseases such as Alzheimers, Huntingtons, and many others. The achievement of glutamate activity in the physiological range requires efficient control by endogenous regulatory factors. Due to the fact that the free pool of ion Zn2+ is a cotransmitter in some glutamate neurons; the role of this element in the pathophysiology of a neurodegenerative diseases has been intensively studied. There is a lot of evidence for Zn2+ dyshomeostasis and glutamate system abnormalities in ischemic and neurodegenerative disorders. However, the precise interaction between Zn2+ regulative function and the glutamate system is still not fully understood. This review describes the relationship between Zn2+ and glutamate dependent signaling pathways under selected pathological central nervous system (CNS) conditions.


Neuropharmacology | 2015

Activation of mTOR dependent signaling pathway is a necessary mechanism of antidepressant-like activity of zinc.

Bernadeta Szewczyk; Bartłomiej Pochwat; Anna Rafalo; Agnieszka Pałucha-Poniewiera; Helena Domin; Gabriel Nowak

The rapid antidepressant response to the N-methyl-D-aspartate (NMDA) receptor antagonists is mediated by activation of the mammalian target of the rapamycin (mTOR) signaling pathway, an increase in the synthesis of synaptic proteins and formation of new synapses in the prefrontal cortex (PFC) of rats. Zinc (Zn), which is a potent NMDA receptor antagonist, exerts antidepressant-like effects in screening tests and models of depression. We focused these studies in investigating whether activation of the mTOR signaling pathway is also a necessary mechanism of the antidepressant-like activity of Zn. We observed that a single injection of Zn (5 mg/kg) induced an increase in the phosphorylation of mTOR and p70S6K 30 min and 3 h after Zn treatment at time points when Zn produced also an antidepressant-like effect in the forced swim test (FST). Furthermore, Zn administered 3 h before the decapitation increased the level of brain derived neurotrophic factor (BDNF), GluA1 and synapsin I. An elevated level of GluA1 and synapsin I was still observed 24 h after the Zn treatment, although Zn did not produce any effects in the FST at that time point. We also observed that pretreatment with rapamycin (mTORC1 inhibitor), LY294002 (PI3K inhibitor), H-89 (PKA inhibitor) and GF109203X (PKC inhibitor) blocked the antidepressant-like effect of Zn in FST in rats and blocks Zn-induced activation of mTOR signaling proteins (analyzed 30 min after Zn administration). These studies indicated that the antidepressant-like activity of Zn depends on the activation of mTOR signaling and other signaling pathways related to neuroplasticity, which can indirectly modulate mTOR function.


Molecular Neurobiology | 2016

Concentration-Dependent Dual Mode of Zn Action at Serotonin 5-HT1A Receptors: In Vitro and In Vivo Studies.

Grzegorz Satała; Beata Duszyńska; Katarzyna Stachowicz; Anna Rafalo; Bartłomiej Pochwat; Christine Luckhart; Paul R. Albert; Mireille Daigle; Kenji F. Tanaka; René Hen; Tomasz Lenda; Gabriel Nowak; Andrzej J. Bojarski; Bernadeta Szewczyk

Recent data has indicated that Zn can modulate serotonergic function through the 5-HT1A receptor (5-HT1AR); however, the exact mechanisms are unknown. In the present studies, radioligand binding assays and behavioural approaches were used to characterize the pharmacological profile of Zn at 5-HT1ARs in more detail. The influence of Zn on agonist binding to 5-HT1ARs stably expressed in HEK293 cells was investigated by in vitro radioligand binding methods using the agonist [3H]-8-OH-DPAT. The in vivo effects of Zn were compared with those of 8-OH-DPAT in hypothermia, lower lip retraction (LLR), 5-HT behavioural syndrome and the forced swim (FST) tests. In the in vitro studies, biphasic effects, which involved allosteric potentiation of agonist binding at sub-micromolar Zn concentrations and inhibition at sub-millimolar Zn concentrations, were found. The in vivo studies showed that Zn did not induce LLR or elements of 5-HT behavioural syndrome but blocked such effects induced by 8-OH-DPAT. Zn decreased body temperature in rats and mice; however, Zn failed to induce hypothermia in the 5-HT1A autoreceptor knockout mice. In the FST, Zn potentiated the effect of 8-OH-DPAT. However, in the FST performed with the 5-HT1A autoreceptor knockout mice, the anti-immobility effect of Zn was partially blocked. Both the binding and behavioural studies suggest a concentration-dependent dual mechanism of Zn action at 5-HT1ARs, with potentiation at low dose and inhibition at high dose. Moreover, the in vivo studies indicate that Zn can modulate both presynaptic and postsynaptic 5-HT1ARs; however, Zn’s effects at presynaptic receptors seem to be more potent.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2017

The level of the zinc homeostasis regulating proteins in the brain of rats subjected to olfactory bulbectomy model of depression

Anna Rafalo; Monika Zadrozna; Barbara Nowak; Katarzyna Kotarska; Katarzyna Wiatrowska; Bartłomiej Pochwat; Magdalena Sowa-Kućma; Paulina Misztak; Gabriel Nowak; Bernadeta Szewczyk

Background: Zinc transporters (ZnTs) and metallothioneins (MT) are important in maintaining Zn homeostasis in the brain. The present study was designed to find out whether alterations in ZnTs and MTs are associated with the pathophysiology of depression and the mechanism of antidepressant action. Methods: Messenger RNA and proteins of ZnT1, ZnT3, ZnT4, ZnT5, ZnT6 and MT1/2 were measured in the prefrontal cortex (PFC) and hippocampus (Hp) of rats subjected to olfactory bulbectomy (OB) (a model of depression) and chronic amitriptyline (AMI) treatment by Real Time PCR and Western Blot/Immunohistochemistry (IHP). Results: Results in the OB rats showed: increases in the protein levels of ZnT1 in the PFC and Hp and MT1/2 in the PFC; a decrease in ZnT3 protein level in the PFC; no changes in ZnT4, ZnT5 and ZnT6 in the PFC and Hp. IHP labeling revealed increases in the optical densities of ZnT1‐IR in the PFC and Hp and decreases in ZnT3 and ZnT4‐IR in the PFC of OB rats. Although OB had no effects on gene expression of ZnTs, mRNAs for MT1/2 were increased. Chronic AMI treatment did not influence protein levels of ZnTs and MT1/2 in Sham and OB rats; however decreased mRNA levels of ZnT4 and ZnT5 in PFC and ZnT1, ZnT3, ZnT4 and ZnT6 in Hp of Sham rats and normalized OB induced increase in MT1/2 gene expression. Conclusions: Changes in ZnTs and MT1/2 suggest altered cortical distribution of Zn in the OB model which further supports the hypothesis that Zn dyshomeostasis may be involved in the pathophysiology of depression. HIGHLIGHTSOlfactory bulbectomy (OB) elevates ZnT1 protein level in the PFC and Hp of rats.OB is associated with decreased levels of ZnT3 protein in the PFC.OB elevates mRNA and protein levels of MT1 and MT2 in the PFC of rats.


Pharmacological Reports | 2016

Brain glutamic acid decarboxylase-67kDa alterations induced by magnesium treatment in olfactory bulbectomy and chronic mild stress models in rats.

Bartłomiej Pochwat; Gabriel Nowak; Bernadeta Szewczyk

BACKGROUND The preclinical results indicate that magnesium, an N-methyl-d-aspartate receptor (NMDAR) blocker has anxiolytic and antidepressant-like activity. One of the mechanisms involved in these activities is modulation of glutamate, γ-aminobutyric acid (GABA) system. Based on this, the aim of the present study was to investigate the effect of magnesium on the level of glutamic acid decarboxylase-67kDa (GAD-67) in the different brain areas in the chronic mild stress (CMS) and olfactory bulbectomy (OB) models of depression in rats. METHODS Magnesium (15mg/kg) was administered intraperitonealy once daily for 14 days in the OB model and for 35 days in the CMS model. 24h after the last dose, the prefrontal cortex (PFC), hippocampus and amygdala were collected and the GAD-67 protein level was determined by the western blotting method. RESULTS In the OB model, chronic magnesium treatment normalized decreased by OB protein level of GAD-67 in PFC. CMS did not influence the GAD-67 protein level, however magnesium increased GAD-67 protein expression in amygdala and PFC of stress rats when compared to vehicle-treated stress group. OB or CMS models as well as magnesium treatment did not affect GAD-67 protein level in the hippocampus. CONCLUSIONS Obtained results indicate that the antidepressant-like activity of magnesium in CMS and OB models of depression is associated with an enhanced expression of GAD-67 in the PFC and amygdala.


Archive | 2016

Zinc Deficiency and Depression

Anna Rafalo; Magdalena Sowa-Kućma; Bartłomiej Pochwat; GabrielNowak; Bernadeta Szewczyk

Zinc deficiency has multiple effects, including neurological and somatic symptoms. Zinc deficiency can lead to depression, increased anxiety, irritability, emotional instability, and induced deficits in social behavior. Clinical studies have shown that low levels of zinc intake contributes to the symptoms of depression and patients suffering from depression have a lower serum zinc level. Also the animal studies have shown an important role of dietary zinc deficiency in the induction of depressive‐like symp‐ toms. Moreover, both preclinical and clinical studies have indicated the potential benefits of zinc supplementation as an adjunct to conventional antidepressant drugs or as a stand‐alone intervention. This chapter focuses on the role of the zinc deficiency in the pathogenesis of depression, changes in animal behavior induced by dietary zinc restriction, the role of zinc supplementation in the treatment of depression, and the possible mechanisms involved in these relationships. Both clinical and preclinical studies related to these findings will be discussed.

Collaboration


Dive into the Bartłomiej Pochwat's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriel Nowak

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Rafalo

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrzej Pilc

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Helena Domin

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Paulina Misztak

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar

Agata Siwek

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge