Bas Brinkhof
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bas Brinkhof.
Clinical Cancer Research | 2005
Wim J. E. Tissing; Jules P.P. Meijerink; Monique L. den Boer; Bas Brinkhof; Elisabeth F.C. van Rossum; Elisabeth R. van Wering; Jan W. Koper; Pieter Sonneveld; Rob Pieters
Glucocorticoid sensitivity is an important prognostic factor in pediatric acute lymphoblastic leukemia (ALL). For its antileukemic effect, glucocorticoid binds the intracellular glucocorticoid receptor (GR) subsequently regulating transcription of downstream genes. We analyzed whether genetic variations within the GR gene are related to differences in the cellular response to glucocorticoids. Methods: In leukemic samples of 57 children, the GR gene was screened for nucleotide variations using a PCR/single-strand conformational polymorphism sequencing strategy. Data were linked to in vivo and in vitro glucocorticoid resistance. Results: No somatic mutations were detected in the GR gene coding region, but six polymorphisms (i.e., ER22/23EK, N363S, BclI, intron mutation 16 bp upstream of exon 5, H588H, and N766N) were identified. In 67% of ALL cases, at least one minor allele of these polymorphisms was detected. Although only borderline significant, the incidence for the N363S polymorphism minor allele was higher (12% versus 6%, P = 0.06) and for the ER22/23EK minor allele lower (4% versus 7.6%, P = 0.1) than in a healthy, comparable population. The different genotypes of the polymorphisms were not related to prednisone resistance. In conclusion, polymorphisms but not somatic mutations in the GR gene coding region occur in leukemic blasts of children with ALL. Our data suggest that these genetic variations are not a major contributor for differences in cellular response to glucocorticoids in childhood ALL. The higher incidence of the N363S minor allele and the lower incidence of the ER22/23EK minor allele in our ALL population as compared with a normal population warrants further research.
Veterinary Immunology and Immunopathology | 2009
Yvette M. Schlotter; Eveline Z. Veenhof; Bas Brinkhof; Victor P.M.G. Rutten; Bart Spee; Ton Willemse; Louis C. Penning
Quantitative real time PCR (Q-PCR) is the method of choice to study mRNA expression levels. Since Q-PCR is very sensitive, normalization of the data with stably expressed reference genes if of utmost importance. The stability of reference genes depends on the tissue and the species of interest. Therefore, evaluation of the stability of reference genes must be performed for each new tissue and species under study. The stability of B2M, GAPDH, HPRT, SRPR, hnRNPH, GUSB, RPL8, RPS5, and RPS19 was analyzed with the GeNorm software in snap frozen canine skin biopsies. Healthy dogs (n=7) and dogs with confirmed atopic dermatitis (n=28) were included. Lesional and non-lesional skin was analyzed. The study indicated that the most appropriate reference genes in canine skin are the ribosomal gene products RPL8, RPS5 and RPS19 besides GUSB and HPRT. As little as three reference genes will reveal highly reliable Q-PCR calculations.
Leukemia | 2005
Wim J. E. Tissing; Jules P.P. Meijerink; M L den Boer; Bas Brinkhof; Rob Pieters
Resistance to glucocorticoids (GC) is an important adverse risk factor in the treatment of acute lymphoblastic leukemia (ALL). To induce apoptosis, GC bind to the GC receptor (GR), which is regulated by various (co)chaperone proteins such as heat-shock protein 70 (HSP-70), HSP-40, HIP (HSP-70-interacting protein), BAG-1 (BCL-2-associated gene product-1), HOP (HSP-70/HSP-90-Organizing protein), HSP-90, P-23, FKBP-51, FKBP-52 and CYP-40. In this study, we tested the hypothesis that mRNA expression levels of these molecules are determinants of GC resistance in childhood ALL. In all, 20 children with ALL cells in vitro sensitive to prednisolone (LC50<0.1 μg/ml) were compared each with a resistant patient (LC50>150 μg/ml), matched for immunophenotype, age and white blood cell count. mRNA expression levels of the (co)chaperone molecules were measured by quantitative real-time RT-PCR and normalized to GAPDH and RNaseP levels. In vitro resistance to prednisolone was measured by MTT assay. HSP-90 mRNA expression levels were 2000-fold higher as compared to HSP-70. Using matched pair analysis, mRNA expression levels of the various (co)chaperone molecules were not significantly different between in vitro-sensitive and -resistant patients. GC resistance in childhood ALL cannot be attributed to different mRNA expression levels of the investigated (co)chaperone molecules involved in GC binding and transport to the nucleus.
Liver International | 2006
Bart Spee; Brigitte Arends; Ted S.G.A.M. van den Ingh; Bas Brinkhof; Hubertus Nederbragt; Jooske IJzer; Tania Roskams; Louis C. Penning; Jan Rothuizen
Abstract: Background/aims: The purpose of this study was to validate spontaneous chronic hepatitis and cirrhosis in dogs as a potential large animal model for fibrotic liver disease in humans by evaluating their molecular pathophysiology.
Stem Cells and Development | 2010
Ewart W. Kuijk; Alain van Mil; Bas Brinkhof; Louis C. Penning; Ben Colenbrander; Bernard A.J. Roelen
Mammalian spermatogonial stem cells are a special type of adult stem cells because they can contribute to the next generation. Knockout studies have indicated a role for TRP53 and PTEN in insulating male germ cells from pluripotency, but the mechanism by which this is achieved is largely unknown. To get more insight in these processes, an RNAi experiment was performed on the mouse spermatogonial stem cell line GSDG1. Lipofectaminemediated transfection of siRNAs directed against Trp53 and Pten resulted in decreased expression levels as determined by quantitative RT-PCR and immunoblotting. The effects of knockdown were examined by determining the expression levels of genes that are involved in reprogramming and pluripotency of cells, specifically Nanog, Eras, c-Myc, Klf4, Oct4, and Sox2. Additionally, the effects of TRP53 or PTEN knockdown on Plzf and Ddx4 expression were measured, which are highly expressed in spermatogonial stem cells and differentiating male germ cells, respectively. The main finding of this study is that knockdown of Trp53 and Pten independently resulted in significantly higher expression levels of the pluripotency-associated gene Nanog, and we hypothesize that TRP53 and PTEN mediated repression is important for the insulation of male germ cells from pluripotency.
PLOS ONE | 2012
Robert P. Favier; Bart Spee; Baukje A. Schotanus; Ted S.G.A.M. van den Ingh; Hille Fieten; Bas Brinkhof; Cornelia S. Viebahn; Louis C. Penning; Jan Rothuizen
New therapeutic concepts developed in rodent models should ideally be evaluated in large animal models prior to human clinical application. COMMD1-deficiency in dogs leads to hepatic copper accumulation and chronic hepatitis representing a Wilson’s disease like phenotype. Detailed understanding of the pathogenesis and time course of this animal model is required to test its feasibility as a large animal model for chronic hepatitis. In addition to mouse models, true longitudinal studies are possible due to the size of these dogs permitting detailed analysis of the sequence of events from initial insult to final cirrhosis. Therefore, liver biopsies were taken each half year from five new born COMMD1-deficient dogs over a period of 42 months. Biopsies were used for H&E, reticulin, and rubeanic acid (copper) staining. Immunohistochemistry was performed on hepatic stellate cell (HSC) activation marker (alpha-smooth muscle actin, α-SMA), proliferation (Ki67), apoptosis (caspase-3), and bile duct and liver progenitor cell (LPC) markers keratin (K) 19 and 7. Quantitative RT-PCR and Western Blots were performed on gene products involved in the regenerative and fibrotic pathways. Maximum copper accumulation was reached at 12 months of age, which coincided with the first signs of hepatitis. HSCs were activated (α-SMA) from 18 months onwards, with increasing reticulin deposition and hepatocytic proliferation in later stages. Hepatitis and caspase-3 activity (first noticed at 18 months) increased over time. Both HGF and TGF-β1 gene expression peaked at 24 months, and thereafter decreased gradually. Both STAT3 and c-MET showed an increased time-dependent activation. Smad2/3 phosphorylation, indicative for fibrogenesis, was present at all time-points. COMMD1-deficient dogs develop chronic liver disease and cirrhosis comparable to human chronic hepatitis, although at much higher pace. Therefore they represent a genetically-defined large animal model to test clinical applicability of new therapeutics developed in rodent models.
Veterinary Immunology and Immunopathology | 2011
C.J. Piek; Bas Brinkhof; E. Teske; Jan Rothuizen; A. Dekker; Louis C. Penning
A high mortality occurs in dogs with idiopathic immune-mediated haemolytic anaemia (IMHA) during the first 2 weeks after the diagnosis. The aim of this study was to investigate the inflammatory response and coagulation abnormalities in dogs with IMHA in relation to the prognosis and to establish the contribution of whole blood tissue factor (TF) and IL-8 gene expressions. Gene expressions in dogs with IMHA were compared to healthy dogs, dogs with DIC, dogs with sepsis, and in two groups of dogs that underwent intensive care treatment but had no evidence for either DIC or sepsis. The whole blood TF and IL-8 expressions were up regulated in all non-IMHA groups. Similarly, the TF expression in IMHA dogs was high, but the intravascular IL-8 expression was not increased. The dogs with IMHA had a pronounced inflammatory response that included a high WBC, left shift and monocytosis in comparison to the other disease groups. Coagulation factor activities in IMHA dogs were decreased fitting consumptive coagulopathy and the acute phase proteins FVIII and fibrinogen were increased. The platelet parameters suggested platelet activation and high platelet turnover in IMHA dogs. The model that best explained mortality contained monocytosis, increased activated partial thromboplastin time and elevated creatinine. Whole blood TF gene expression is up regulated and may contribute to consumptive coagulopathy in dogs with IMHA. Increased TF expression by activated platelets is an alternative explanation and should be investigated.
Leukemia | 2002
M.E.L. van der Burg; B Smit; Bas Brinkhof; Bh Barendregt; Mcm Verschuren; M Dib; H B Beverloo; Jjm van Dongen; A W Langerak
About 30% of T cell acute lymphoblastic leukemias (T-ALL) carry TAL1 gene aberrations. In the majority of cases (approximately 25%), this concerns a submicroscopic deletion of ∼90 kb in chromosome region 1p32, which deletes the coding regions of the SIL gene and the untranslated region of the TAL1 gene, thereby placing the TAL1 gene under control of the SIL promoter region. Translocation (1;14)(p32;q11) involving the TAL1 gene occurs at a much lower frequency (3%), whereas some other rare variant translocations have been described as well. In this study we developed a set of TAL1 FISH probes based on the split-signal FISH principle that enables detection of both types of TAL1 gene aberrations in single test. For this purpose, one probe was designed downstream of the TAL1 gene (TAL1-D) and the second probe in the region upstream of the TAL1 gene, partly covering the SIL gene (SIL-U). We show that this split-signal FISH probe set allows reliable detection of the unaffected SIL-TAL1 gene region with a fusion signal, SIL-TAL1 fusion genes with loss of the SIL-U signal, and TAL1 gene translocations with a split-signal, independent of the involved partner gene.
Comparative Hepatology | 2009
Gaby Hoffmann; Jooske IJzer; Bas Brinkhof; Baukje A. Schotanus; Ted S.G.A.M. van den Ingh; Louis C. Penning; Jan Rothuizen
BackgroundTo minimize the necessary number of biopsies for molecular and histological research we evaluated different sampling techniques, fixation methods, and storage procedures for canine liver tissue. For addressing the aim, three biopsy techniques (wedge biopsy, Menghini, True-cut), four storage methods for retrieval of RNA (snap freezing, RNAlater, Boonfix, RLT-buffer), two RNA isolation procedures (Trizol and RNAeasy), and three different fixation protocols for histological studies (10% buffered formalin, RNAlater, Boonfix) were compared. Histological evaluation was based on hematoxylin-eosin (HE) and reticulin (fibrogenesis) staining, and rubeanic acid and rhodanine stains for copper. Immunohistochemical evaluation was performed for cytokeratin-7 (K-7), multidrug resistance binding protein-2 (MRP-2) and Hepar-1.ResultsRNA quality was best guaranteed by the combination of a Menghini biopsy with NaCl, followed by RNAlater preservation and RNAeasy mini kit extraction. These results were confirmed by quantitative RT-PCR testing. Reliable histological assessment for copper proved only possible in formalin fixed liver tissue. Short formalin fixation (1–4 hrs) improved immunohistochemical reactivity and preservation of good morphology in small liver biopsies.ConclusionAt least two biopsies (RNAlater and formalin) are needed. Since human and canine liver diseases are highly comparable, it is conceivable that the protocols described here can be easily translated into the human biomedical field.
BMC Genomics | 2015
Bas Brinkhof; Helena T.A. van Tol; Marian J. A. Groot Koerkamp; Frank M. Riemers; Sascha G IJzer; Kaveh Mashayekhi; Henk P. Haagsman; Bernard A.J. Roelen
BackgroundGenes and signalling pathways involved in pluripotency have been studied extensively in mouse and human pre-implantation embryos and embryonic stem (ES) cells. The unsuccessful attempts to generate ES cell lines from other species including cattle suggests that other genes and pathways are involved in maintaining pluripotency in these species. To investigate which genes are involved in bovine pluripotency, expression profiles were generated from morula, blastocyst, trophectoderm and inner cell mass (ICM) samples using microarray analysis. As MAPK inhibition can increase the NANOG/GATA6 ratio in the inner cell mass, additionally blastocysts were cultured in the presence of a MAPK inhibitor and changes in gene expression in the inner cell mass were analysed.ResultsBetween morula and blastocyst 3,774 genes were differentially expressed and the largest differences were found in blastocyst up-regulated genes. Gene ontology (GO) analysis shows lipid metabolic process as the term most enriched with genes expressed at higher levels in blastocysts. Genes with higher expression levels in morulae were enriched in the RNA processing GO term. Of the 497 differentially expressed genes comparing ICM and TE, the expression of NANOG, SOX2 and POU5F1 was increased in the ICM confirming their evolutionary preserved role in pluripotency. Several genes implicated to be involved in differentiation or fate determination were also expressed at higher levels in the ICM. Genes expressed at higher levels in the ICM were enriched in the RNA splicing and regulation of gene expression GO term. Although NANOG expression was elevated upon MAPK inhibition, SOX2 and POU5F1 expression showed little increase. Expression of other genes in the MAPK pathway including DUSP4 and SPRY4, or influenced by MAPK inhibition such as IFNT, was down-regulated.ConclusionThe data obtained from the microarray studies provide further insight in gene expression during bovine embryonic development. They show an expression profile in pluripotent cells that indicates a pluripotent, epiblast-like state. The inability to culture ICM cells as stem cells in the presence of an inhibitor of MAPK activity together with the reported data indicates that MAPK inhibition alone is not sufficient to maintain a pluripotent character in bovine cells.