Bashar Hamza
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bashar Hamza.
Nature Methods | 2015
A. Fatih Sarioglu; Nicola Aceto; Nikola Kojic; Maria C. Donaldson; Mahnaz Zeinali; Bashar Hamza; Amanda Engstrom; Huili Zhu; Tilak Sundaresan; David T. Miyamoto; Xi Luo; Aditya Bardia; Ben S. Wittner; Sridhar Ramaswamy; Toshi Shioda; David T. Ting; Shannon L. Stott; Ravi Kapur; Shyamala Maheswaran; Daniel A. Haber; Mehmet Toner
Cancer cells metastasize through the bloodstream either as single migratory circulating tumor cells (CTCs) or as multicellular groupings (CTC clusters). Existing technologies for CTC enrichment are designed to isolate single CTCs, and although CTC clusters are detectable in some cases, their true prevalence and significance remain to be determined. Here we developed a microchip technology (the Cluster-Chip) to capture CTC clusters independently of tumor-specific markers from unprocessed blood. CTC clusters are isolated through specialized bifurcating traps under low–shear stress conditions that preserve their integrity, and even two-cell clusters are captured efficiently. Using the Cluster-Chip, we identified CTC clusters in 30–40% of patients with metastatic breast or prostate cancer or with melanoma. RNA sequencing of CTC clusters confirmed their tumor origin and identified tissue-derived macrophages within the clusters. Efficient capture of CTC clusters will enable the detailed characterization of their biological properties and role in metastasis.
Cell Host & Microbe | 2013
Pierre Yves Mantel; Anh Hoang; Ilana Goldowitz; Daria Potashnikova; Bashar Hamza; Ivan A. Vorobjev; Ionita Ghiran; Mehmet Toner; Daniel Irimia; Alexander R. Ivanov; Natasha S. Barteneva; Matthias Marti
Humans and mice infected with different Plasmodium strains are known to produce microvesicles derived from the infected red blood cells (RBCs), denoted RMVs. Studies in mice have shown that RMVs are elevated during infection and have proinflammatory activity. Here we present a detailed characterization of RMV composition and function in the human malaria parasite Plasmodium falciparum. Proteomics profiling revealed the enrichment of multiple host and parasite proteins, in particular of parasite antigens associated with host cell membranes and proteins involved in parasite invasion into RBCs. RMVs are quantitatively released during the asexual parasite cycle prior to parasite egress. RMVs demonstrate potent immunomodulatory properties on human primary macrophages and neutrophils. Additionally, RMVs are internalized by infected red blood cells and stimulate production of transmission stage parasites in a dose-dependent manner. Thus, RMVs mediate cellular communication within the parasite population and with the host innate immune system.
Science Translational Medicine | 2014
Anne L. Robertson; Geoffrey R. Holmes; Aleksandra Bojarczuk; Joseph Burgon; Catherine A. Loynes; Myriam Chimen; Amy Sawtell; Bashar Hamza; Joseph Willson; Sarah R. Walmsley; Sean R. Anderson; Mark Coles; Stuart N. Farrow; Roberto Solari; Simon Jones; Lynne R. Prince; Daniel Irimia; G. Ed Rainger; Visakan Kadirkamanathan; Moira K. B. Whyte; Stephen A. Renshaw
The proresolution therapeutic tanshinone IIA drives inflammation resolution by reverse migration. An Anti-Inflammatory Fish Story Inflammation is one way the body tries to protect itself from injury and begin the healing process. However, as with any good thing, too much inflammation can be harmful, causing bystander injuries to healthy tissue. Hence, there is an active mechanism to resolve inflammation; failed resolution contributes to diseases of chronic inflammation such as atherosclerosis and rheumatoid arthritis. Now, Robertson et al. use a zebrafish screening platform to identify new means of resolving inflammation. The authors used a transgenic zebrafish model of sterile tissue injury to screen potential factors involved in inflammation resolution. They found that tanshinone IIA, which is derived from a Chinese medicinal herb, had proresolving activity by both inducing neutrophil apoptosis and promoting reverse migration of neutrophils. What’s more, these effects were not limited to their zebrafish model but held true in human neutrophils. Although efficacy remains to be tested in actual patients, these data support “fishing” for new drug candidates for resolving inflammation. Diseases of failed inflammation resolution are common and largely incurable. Therapeutic induction of inflammation resolution is an attractive strategy to bring about healing without increasing susceptibility to infection. However, therapeutic targeting of inflammation resolution has been hampered by a lack of understanding of the underlying molecular controls. To address this drug development challenge, we developed an in vivo screen for proresolution therapeutics in a transgenic zebrafish model. Inflammation induced by sterile tissue injury was assessed for accelerated resolution in the presence of a library of known compounds. Of the molecules with proresolution activity, tanshinone IIA, derived from a Chinese medicinal herb, potently induced inflammation resolution in vivo both by induction of neutrophil apoptosis and by promoting reverse migration of neutrophils. Tanshinone IIA blocked proinflammatory signals in vivo, and its effects are conserved in human neutrophils, supporting a potential role in treating human inflammation and providing compelling evidence of the translational potential of this screening strategy.
Neurobiology of Aging | 2014
Sung Hoon Baik; Moon-Yong Cha; Young-Min Hyun; Hansang Cho; Bashar Hamza; Dong Kyu Kim; Sun-Ho Han; Heesun Choi; Kyung Ho Kim; Minho Moon; Jeewoo Lee; Minsoo Kim; Daniel Irimia; Inhee Mook-Jung
Immune responses in the brain are thought to play a role in disorders of the central nervous system, but an understanding of the process underlying how immune cells get into the brain and their fate there remains unclear. In this study, we used a 2-photon microscopy to reveal that neutrophils infiltrate brain and migrate toward amyloid plaques in a mouse model of Alzheimers disease. These findings suggest a new molecular process underlying the pathophysiology of Alzheimers disease.
Technology | 2013
Anh Hoang; Caroline N. Jones; Laurie Dimisko; Bashar Hamza; Joseph M. Martel; Nikola Kojic; Daniel Irimia
Neutrophil chemotaxis is critical for defense against infections and its alterations could lead to chronic inflammation and tissue injury. The central role that transient alterations of neutrophil chemotaxis could have on patient outcomes calls for its quantification in the clinic. However, current methods for measuring neutrophil chemotaxis require large volumes of blood and are time consuming. To address the need for rapid and robust assays, we designed a microfluidic device that measures neutrophil chemotaxis directly from a single droplet of blood. We validated the assay by comparing neutrophil chemotaxis from finger prick, venous blood and purified neutrophil samples. We found consistent average velocity of (19 ± 6 μm/min) and directionality (91.1%) between the three sources. We quantified the variability in neutrophil chemotaxis between healthy donors and found no significant changes over time. We also validated the device in the clinic and documented temporary chemotaxis deficiencies after burn injuries.
PLOS ONE | 2016
Monica Skoge; Elisabeth Wong; Bashar Hamza; Albert Bae; Joseph M. Martel; Rama Kataria; Ineke Keizer-Gunnink; Arjan Kortholt; Peter J.M. van Haastert; Guillaume Charras; Chris Janetopoulos; Daniel Irimia
Chemotaxis is the ability to migrate towards the source of chemical gradients. It underlies the ability of neutrophils and other immune cells to hone in on their targets and defend against invading pathogens. Given the importance of neutrophil migration to health and disease, it is crucial to understand the basic mechanisms controlling chemotaxis so that strategies can be developed to modulate cell migration in clinical settings. Because of the complexity of human genetics, Dictyostelium and HL60 cells have long served as models system for studying chemotaxis. Since many of our current insights into chemotaxis have been gained from these two model systems, we decided to compare them side by side in a set of winner-take-all races, the Dicty World Races. These worldwide competitions challenge researchers to genetically engineer and pharmacologically enhance the model systems to compete in microfluidic racecourses. These races bring together technological innovations in genetic engineering and precision measurement of cell motility. Fourteen teams participated in the inaugural Dicty World Race 2014 and contributed cell lines, which they tuned for enhanced speed and chemotactic accuracy. The race enabled large-scale analyses of chemotaxis in complex environments and revealed an intriguing balance of speed and accuracy of the model cell lines. The successes of the first race validated the concept of using fun-spirited competition to gain insights into the complex mechanisms controlling chemotaxis, while the challenges of the first race will guide further technological development and planning of future events.
Journal of Leukocyte Biology | 2016
Caroline N. Jones; Anh Hoang; Joseph M. Martel; Laurie Dimisko; Amy Mikkola; Yoshitaka Inoue; Naohide Kuriyama; Marina Yamada; Bashar Hamza; Masao Kaneki; H. Shaw Warren; Diane E. Brown; Daniel Irimia
Animal models of human disease differ in innate immune responses to stress, pathogens, or injury. Precise neutrophil phenotype measurements could facilitate interspecies comparisons. However, such phenotype comparisons could not be performed accurately with the use of current assays, as they require the separation of neutrophils from blood using species‐specific protocols, and they introduce distinct artifacts. Here, we report a microfluidic technology that enables robust characterization of neutrophil migratory phenotypes in a manner independent of the donor species and performed directly in a droplet of whole blood. The assay relies on the particular ability of neutrophils to deform actively during chemotaxis through microscale channels that block the advance of other blood cells. Neutrophil migration is measured directly in blood, in the presence of other blood cells and serum factors. Our measurements reveal important differences among migration counts, velocity, and directionality among neutrophils from 2 common mouse strains, rats, and humans.
Lab on a Chip | 2014
Hansang Cho; Bashar Hamza; Elisabeth Wong; Daniel Irimia
Neutrophils are the most abundant type of white blood cells in the circulation, protecting the body against pathogens and responding early to inflammation. Although we understand how neutrophils respond to individual stimuli, we know less about how they prioritize between competing signals or respond to combinational signals. This situation is due in part to the lack of adequate experimental systems to provide signals in controlled spatial and temporal fashion. To address these limitations, we designed a platform for generating on-demand, competing chemical gradients and for monitoring neutrophil migration. On this platform, we implemented forty-eight assays generating independent gradients and employed synchronized valves to control the timing of these gradients. We observed faster activation of neutrophils in response to fMLP than to LTB4 and unveiled for the first time a potentiating effect for fMLP during migration towards LTB4. Our observations, enabled by the new tools, challenge the current paradigm of inhibitory competition between distinct chemoattractant gradients and suggest that human neutrophils are capable of complex integration of chemical signals in their environment.
Journal of Visualized Experiments | 2014
Caroline N. Jones; Anh Hoang; Laurie Dimisko; Bashar Hamza; Joseph M. Martel; Daniel Irimia
Neutrophils play an essential role in protection against infections and their numbers in the blood are frequently measured in the clinic. Higher neutrophil counts in the blood are usually an indicator of ongoing infections, while low neutrophil counts are a warning sign for higher risks for infections. To accomplish their functions, neutrophils also have to be able to move effectively from the blood where they spend most of their life, into tissues, where infections occur. Consequently, any defects in the ability of neutrophils to migrate can increase the risks for infections, even when neutrophils are present in appropriate numbers in the blood. However, measuring neutrophil migration ability in the clinic is a challenging task, which is time consuming, requires large volume of blood, and expert knowledge. To address these limitations, we designed a robust microfluidic assays for neutrophil migration, which requires a single droplet of unprocessed blood, circumvents the need for neutrophil separation, and is easy to quantify on a simple microscope. In this assay, neutrophils migrate directly from the blood droplet, through small channels, towards the source of chemoattractant. To prevent the granular flow of red blood cells through the same channels, we implemented mechanical filters with right angle turns that selectively block the advance of red blood cells. We validated the assay by comparing neutrophil migration from blood droplets collected from finger prick and venous blood. We also compared these whole blood (WB) sources with neutrophil migration from samples of purified neutrophils and found consistent speed and directionality between the three sources. This microfluidic platform will enable the study of human neutrophil migration in the clinic and the research setting to help advance our understanding of neutrophil functions in health and disease.
Physical review applied | 2014
Yongjin Sung; Niyom Lue; Bashar Hamza; Joseph M. Martel; Daniel Irimia; Ramachandra R. Dasari; Wonshik Choi; Zahid Yaqoob; Peter T. C. So