Basil Danylec
Monash University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Basil Danylec.
Protein Science | 2001
Brian J. Smith; Peter M. Colman; Mark von Itzstein; Basil Danylec; Joseph N. Varghese
2,3‐didehydro‐2‐deoxy‐N‐acetylneuraminic acid (DANA) is a transition state analog inhibitor of influenza virus neuraminidase (NA). Replacement of the hydroxyl at the C9 position in DANA and 4‐amino‐DANA with an amine group, with the intention of taking advantage of an increased electrostatic interaction with a conserved acidic group in the active site to improve inhibitor binding, significantly reduces the inhibitor activity of both compounds. The three‐dimensional X‐ray structure of the complexes of these ligands and NA was obtained to 1.4 Å resolution and showed that both ligands bind isosterically to DANA. Analysis of the geometry of the ammonium at the C4 position indicates that Glu119 may be neutral when these ligands bind. A computational analysis of the binding energies indicates that the substitution is successful in increasing the energy of interaction; however, the gains that are made are not sufficient to overcome the energy that is required to desolvate that part of the ligand that comes in contact with the protein.
Journal of Chromatography A | 2013
Shima N.N.S. Hashim; Lachlan J. Schwarz; Reinhard I. Boysen; Yuanzhong Yang; Basil Danylec; Milton T.W. Hearn
Red wine has long been credited as a good source of health-beneficial antioxidants, including the bioactive polyphenols catechin, quercetin, and (E)-resveratrol. In this paper, we report the application of reusable molecularly imprinted polymers (MIPs) for the selective and robust solid-phase extraction (SPE) and rapid analysis of (E)-resveratrol (LOD=8.87×10(-3) mg/L, LOQ=2.94×10(-2) mg/L), along with a range of other polyphenols from an Australian Pinot noir red wine. Optimization of the molecularly imprinted solid-phase extraction (MISPE) protocol resulted in the significant enrichment of (E)-resveratrol and several structurally related polyphenols. These secondary metabolites were subsequently identified by RP-HPLC and μLC-ESI ion trap MS/MS methods. The developed MISPE protocol employed low volumes of environmentally benign solvents selected according to the Green Chemistry principles, and resulted in the recovery of 99% of the total (E)-resveratrol present. These results further demonstrate the potential of generic protocols for the analysis of target compound with health beneficial properties within the food and nutraceutical industries using tailor-made MIPs.
Journal of Chromatography A | 2011
Lachlan J. Schwarz; Basil Danylec; Simon J. Harris; Reinhard I. Boysen; Milton T.W. Hearn
(E)-Resveratrol imprinted polymers have been rationally designed with the aid of molecular modelling and NMR spectroscopic titration techniques to determine the optimal ratio of the template to functional monomer for polymer formation. Based on this approach, (E)-resveratrol imprinted polymers were prepared via non-covalent self-assembly with the functional monomer 4-vinylpyridine (4VP) in a 1:3 molar ratio. Polymerisation in the presence of a cross-linker resulted in rigid block copolymers that had selective capacities towards (E)-resveratrol (e.g. 14 μmol/g) when compared to the non-imprinted reference polymer. The selectivity of these MIPs was also examined using several structurally related polyphenolic compounds to determine the influence of polyphenolic hydroxyl number and position on binding and molecular recognition.
Journal of Agricultural and Food Chemistry | 2011
Lachlan J. Schwarz; Basil Danylec; Yuanzhong Yang; Simon J. Harris; Reinhard I. Boysen; Milton T.W. Hearn
Molecularly imprinted solid phase extraction (MISPE) has been employed to isolate and concentrate bioactive polyphenols from peanut press waste. To this end, a molecularly imprinted polymer (MIP) templated with the phytoalexin (E)-resveratrol has been prepared via self-assembly with the functional monomer 4-vinylpyridine (4VP) in a 1:3 molar ratio. Subsequent molecular interrogation of the MIP binding sites demonstrated preferential structural selectivity for (E)-resveratrol with respect to other structurally related naturally occurring compounds. This selectivity was subsequently exploited to achieve substantial sample cleanup of peanut press waste under aqueous conditions with significant enrichment of (E)-resveratrol (>60 fold) requiring minimal sample preparation.
Journal of Chromatography A | 2014
Shima N.N.S. Hashim; Reinhard I. Boysen; Lachlan J. Schwarz; Basil Danylec; Milton T.W. Hearn
Non-covalent and covalent imprinting strategies have been investigated for the synthesis of stigmasterol imprinted polymers. The synthesized molecularly imprinted polymers (MIPs) were then evaluated for their recognition and selectivity towards stigmasterol via static and dynamic batch-binding assays and their performance measured against control non-imprinted polymers (NIPs). MIPs prepared using the conventional non-covalent imprinting method displayed little to no binding affinity for stigmasterol under various conditions. In contrast, the application of a covalent imprinting approach using the novel post-synthetically cleavable monomer-template composite stigmasteryl-3-O-methacrylate resulted in the fabrication of a MIP that successfully recognized stigmasterol in both organic and partially aqueous environments. The affinity and selectivity of the covalently prepared MIP was enhanced when undertaken in a partially aqueous environment consisting of an acetonitrile/water (9:1, v/v) solvent mixture. These features have been exploited in a molecularly imprinted solid-phase extraction (MISPE) format, wherein the preferential retention of stigmasterol (with an imprint factor of 12) was demonstrated with 99% recovery in comparison to cholesterol (imprint factor of 6) and ergosterol (imprint factor of 4) while in the presence of several closely related steryl analogues.
Analytical Methods | 2015
Lachlan J. Schwarz; Mahesh K. Potdar; Basil Danylec; Reinhard I. Boysen; Milton T.W. Hearn
The microwave-mediated synthesis of resveratrol molecularly imprinted polymers is reported. The binding performance of these functional polymers has been evaluated and compared to the corresponding thermally-initiated polymers. The advantages of microwave-synthesis include a 20-fold decrease in polymerisation time, similar binding capacities and enhanced molecular selectivity for resveratrol. These binding data indicate microwave-mediated polymerisation provides superior binding site organization and access.
Journal of Chromatography A | 2016
Shima N.N.S. Hashim; Lachlan J. Schwarz; Basil Danylec; Khosse Mitri; Yuanzhong Yang; Reinhard I. Boysen; Milton T.W. Hearn
A semi-covalent imprinting strategy has been developed for the synthesis of molecularly-imprinted polymers specific for the fungal sterol, ergosterol, a biological precursor of vitamin D2. This imprinting approach involved a novel post-synthesis cleavable monomer-template composite, namely ergosteryl methacrylate, and resulted in the formation of an imprinted polymer that selectively and efficiently recognized ergosterol through non-covalent interactions. The derived molecularly-imprinted polymer and the corresponding non-imprinted polymer were systematically evaluated for their selectivity towards ergosterol via static and dynamic binding studies using various ergosteryl esters (e.g. ergosteryl-cinnamate, -ferulate, -coumarate, -ferulate acetate and -acetate, respectively) as competitors. Moreover, the binding capacity of the molecularly imprinted polymer for ergosterol was enhanced when the sample loading conditions involved the use of partially aqueous solvent mixtures, such as acetonitrile/water (9:1 (v/v) or 8:2 (v/v)). These attributes were exploited in a solid-phase extraction format, whereby ergosterol was obtained with excellent recoveries from an extract of the fruiting body powder of the medicinal fungus Ganoderma tsugae var. Janniae.
Analytica Chimica Acta | 2016
Roshanak Sepehrifar; Reinhard I. Boysen; Basil Danylec; Yuanzhong Yang; Kei Saito; Milton T.W. Hearn
A new type of stimuli-responsive polymeric (SRP) coating has been prepared for use in open tubular capillary electrochromatography (OT-CEC), by grafting poly(2-dimethylaminoethylmethacrylate)-block-poly(acrylic acid) (PDMAEMA-b-PAA) as a Y-shaped block copolymer with two dissimilar chain compositions onto the inner walls of aminopropyl-modified silica capillaries. The grafting process introduced weakly charged functional groups from the PAA and PDMAEMA, enabling the generation of electroendosmotic flow with magnitude and direction adjustable by changing the pH of the running buffer electrolyte. This stimuli-responsive PDMAEMA-b-PAA block copolymer was found to provide excellent resolution of various acidic and basic compounds, leading to efficient analyte separation. When operated in the OT-CEC mode, separation selectivities could be readily manipulated via differential contributions from chromatographic and electrophoretic mechanisms, simply by changing the pH or the ionic strength of the running buffer electrolyte.
Journal of Chromatography A | 2016
Lachlan J. Schwarz; Basil Danylec; Simon J. Harris; Reinhard I. Boysen; Milton T.W. Hearn
Molecularly imprinted polymers (MIPs) templated with either the phytoalexin, (E)-resveratrol, or its structural analog, 3,5-dihydroxy-N-(4-hydroxyphenyl)benzamide, have been used in tandem for the sequential extraction of (E)-resveratrol from aqueous peanut meal extracts in high purity and in near quantitative yields. Re-processing of the (E)-resveratrol-depleted peanut meal extract with the 3,5-dihydroxy-N-(4-hydroxyphenyl)benzamide imprinted MIP yielded additional polyphenolic components, identified as A-type procyanidins. Tandem liquid chromatography-electrospray ionization mass spectrometry confirmed the identity and purity of the isolated products. This study documents the advantages of tandem approaches with MIPs for the solid phase extraction and analysis of multiple bioactive compounds present in complex biomass waste streams.
Molecules | 2015
Basil Danylec; Lachlan J. Schwarz; Simon J. Harris; Reinhard I. Boysen; Milton T.W. Hearn
Molecularly imprinted polymers are versatile materials with wide application scope for the detection, capture and separation of specific compounds present in complex feed stocks. A major challenge associated with their preparation has been the need to sacrifice one mole equivalent of the template molecule to generate the complementary polymer cavities that selectively bind the target molecule. Moreover, template molecules can often be difficult to synthesise, expensive or lack stability. In this study, we describe a new approach, directed at the use of synthetic selectophores, chosen as readily prepared and low cost structural analogues with recognition groups in similar three-dimensional arrangements as found in the target molecule. To validate the approach, a comparative study of selectophores related to the polyphenolic compound (E)-resveratrol has been undertaken using traditional and green chemical synthetic approaches. These molecular mimic compounds were employed as polymer templates and also as binding analytes to interrogate the recognition sites associated with the molecularly imprinted polymers. Importantly, the study confirms that the use of selectophores has the potential to confer practical advantages, including access to more efficient methods for selection and preparation of suitable template molecules with a broader range of molecular diversity, as well as delivering imprinted polymers capable of recognizing the target compound and structurally related products.
Collaboration
Dive into the Basil Danylec's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputs