Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lachlan J. Schwarz is active.

Publication


Featured researches published by Lachlan J. Schwarz.


Journal of Chromatography A | 2013

Rapid solid-phase extraction and analysis of resveratrol and other polyphenols in red wine

Shima N.N.S. Hashim; Lachlan J. Schwarz; Reinhard I. Boysen; Yuanzhong Yang; Basil Danylec; Milton T.W. Hearn

Red wine has long been credited as a good source of health-beneficial antioxidants, including the bioactive polyphenols catechin, quercetin, and (E)-resveratrol. In this paper, we report the application of reusable molecularly imprinted polymers (MIPs) for the selective and robust solid-phase extraction (SPE) and rapid analysis of (E)-resveratrol (LOD=8.87×10(-3) mg/L, LOQ=2.94×10(-2) mg/L), along with a range of other polyphenols from an Australian Pinot noir red wine. Optimization of the molecularly imprinted solid-phase extraction (MISPE) protocol resulted in the significant enrichment of (E)-resveratrol and several structurally related polyphenols. These secondary metabolites were subsequently identified by RP-HPLC and μLC-ESI ion trap MS/MS methods. The developed MISPE protocol employed low volumes of environmentally benign solvents selected according to the Green Chemistry principles, and resulted in the recovery of 99% of the total (E)-resveratrol present. These results further demonstrate the potential of generic protocols for the analysis of target compound with health beneficial properties within the food and nutraceutical industries using tailor-made MIPs.


Molecules | 2015

Recent Developments in Chemical Synthesis with Biocatalysts in Ionic Liquids

Mahesh K. Potdar; Geoffrey F. Kelso; Lachlan J. Schwarz; Chunfang Zhang; Milton T.W. Hearn

Over the past decade, a variety of ionic liquids have emerged as greener solvents for use in the chemical manufacturing industries. Their unique properties have attracted the interest of chemists worldwide to employ them as replacement for conventional solvents in a diverse range of chemical transformations including biotransformations. Biocatalysts are often regarded as green catalysts compared to conventional chemical catalysts in organic synthesis owing to their properties of low toxicity, biodegradability, excellent selectivity and good catalytic performance under mild reaction conditions. Similarly, a selected number of specific ionic liquids can be considered as greener solvents superior to organic solvents owing to their negligible vapor pressure, low flammability, low toxicity and ability to dissolve a wide range of organic and biological substances, including proteins. A combination of biocatalysts and ionic liquids thus appears to be a logical and promising opportunity for industrial use as an alternative to conventional organic chemistry processes employing organic solvents. This article provides an overview of recent developments in this field with special emphasis on the application of more sustainable enzyme-catalyzed reactions and separation processes employing ionic liquids, driven by advances in fundamental knowledge, process optimization and industrial deployment.


Journal of Agricultural and Food Chemistry | 2011

Enrichment of (E)-Resveratrol from Peanut Byproduct with Molecularly Imprinted Polymers

Lachlan J. Schwarz; Basil Danylec; Yuanzhong Yang; Simon J. Harris; Reinhard I. Boysen; Milton T.W. Hearn

Molecularly imprinted solid phase extraction (MISPE) has been employed to isolate and concentrate bioactive polyphenols from peanut press waste. To this end, a molecularly imprinted polymer (MIP) templated with the phytoalexin (E)-resveratrol has been prepared via self-assembly with the functional monomer 4-vinylpyridine (4VP) in a 1:3 molar ratio. Subsequent molecular interrogation of the MIP binding sites demonstrated preferential structural selectivity for (E)-resveratrol with respect to other structurally related naturally occurring compounds. This selectivity was subsequently exploited to achieve substantial sample cleanup of peanut press waste under aqueous conditions with significant enrichment of (E)-resveratrol (>60 fold) requiring minimal sample preparation.


Journal of Chromatography A | 2014

A comparison of covalent and non-covalent imprinting strategies for the synthesis of stigmasterol imprinted polymers

Shima N.N.S. Hashim; Reinhard I. Boysen; Lachlan J. Schwarz; Basil Danylec; Milton T.W. Hearn

Non-covalent and covalent imprinting strategies have been investigated for the synthesis of stigmasterol imprinted polymers. The synthesized molecularly imprinted polymers (MIPs) were then evaluated for their recognition and selectivity towards stigmasterol via static and dynamic batch-binding assays and their performance measured against control non-imprinted polymers (NIPs). MIPs prepared using the conventional non-covalent imprinting method displayed little to no binding affinity for stigmasterol under various conditions. In contrast, the application of a covalent imprinting approach using the novel post-synthetically cleavable monomer-template composite stigmasteryl-3-O-methacrylate resulted in the fabrication of a MIP that successfully recognized stigmasterol in both organic and partially aqueous environments. The affinity and selectivity of the covalently prepared MIP was enhanced when undertaken in a partially aqueous environment consisting of an acetonitrile/water (9:1, v/v) solvent mixture. These features have been exploited in a molecularly imprinted solid-phase extraction (MISPE) format, wherein the preferential retention of stigmasterol (with an imprint factor of 12) was demonstrated with 99% recovery in comparison to cholesterol (imprint factor of 6) and ergosterol (imprint factor of 4) while in the presence of several closely related steryl analogues.


Analytical Methods | 2015

Microwave-assisted synthesis of resveratrol imprinted polymers with enhanced selectivity

Lachlan J. Schwarz; Mahesh K. Potdar; Basil Danylec; Reinhard I. Boysen; Milton T.W. Hearn

The microwave-mediated synthesis of resveratrol molecularly imprinted polymers is reported. The binding performance of these functional polymers has been evaluated and compared to the corresponding thermally-initiated polymers. The advantages of microwave-synthesis include a 20-fold decrease in polymerisation time, similar binding capacities and enhanced molecular selectivity for resveratrol. These binding data indicate microwave-mediated polymerisation provides superior binding site organization and access.


Journal of Chromatography A | 2016

Recovery of ergosterol from the medicinal mushroom, Ganoderma tsugae var. Janniae, with a molecularly imprinted polymer derived from a cleavable monomer-template composite

Shima N.N.S. Hashim; Lachlan J. Schwarz; Basil Danylec; Khosse Mitri; Yuanzhong Yang; Reinhard I. Boysen; Milton T.W. Hearn

A semi-covalent imprinting strategy has been developed for the synthesis of molecularly-imprinted polymers specific for the fungal sterol, ergosterol, a biological precursor of vitamin D2. This imprinting approach involved a novel post-synthesis cleavable monomer-template composite, namely ergosteryl methacrylate, and resulted in the formation of an imprinted polymer that selectively and efficiently recognized ergosterol through non-covalent interactions. The derived molecularly-imprinted polymer and the corresponding non-imprinted polymer were systematically evaluated for their selectivity towards ergosterol via static and dynamic binding studies using various ergosteryl esters (e.g. ergosteryl-cinnamate, -ferulate, -coumarate, -ferulate acetate and -acetate, respectively) as competitors. Moreover, the binding capacity of the molecularly imprinted polymer for ergosterol was enhanced when the sample loading conditions involved the use of partially aqueous solvent mixtures, such as acetonitrile/water (9:1 (v/v) or 8:2 (v/v)). These attributes were exploited in a solid-phase extraction format, whereby ergosterol was obtained with excellent recoveries from an extract of the fruiting body powder of the medicinal fungus Ganoderma tsugae var. Janniae.


Journal of Chromatography A | 2016

Sequential molecularly imprinted solid-phase extraction methods for the analysis of resveratrol and other polyphenols.

Lachlan J. Schwarz; Basil Danylec; Simon J. Harris; Reinhard I. Boysen; Milton T.W. Hearn

Molecularly imprinted polymers (MIPs) templated with either the phytoalexin, (E)-resveratrol, or its structural analog, 3,5-dihydroxy-N-(4-hydroxyphenyl)benzamide, have been used in tandem for the sequential extraction of (E)-resveratrol from aqueous peanut meal extracts in high purity and in near quantitative yields. Re-processing of the (E)-resveratrol-depleted peanut meal extract with the 3,5-dihydroxy-N-(4-hydroxyphenyl)benzamide imprinted MIP yielded additional polyphenolic components, identified as A-type procyanidins. Tandem liquid chromatography-electrospray ionization mass spectrometry confirmed the identity and purity of the isolated products. This study documents the advantages of tandem approaches with MIPs for the solid phase extraction and analysis of multiple bioactive compounds present in complex biomass waste streams.


Molecules | 2015

The application of template selectophores for the preparation of molecularly imprinted polymers

Basil Danylec; Lachlan J. Schwarz; Simon J. Harris; Reinhard I. Boysen; Milton T.W. Hearn

Molecularly imprinted polymers are versatile materials with wide application scope for the detection, capture and separation of specific compounds present in complex feed stocks. A major challenge associated with their preparation has been the need to sacrifice one mole equivalent of the template molecule to generate the complementary polymer cavities that selectively bind the target molecule. Moreover, template molecules can often be difficult to synthesise, expensive or lack stability. In this study, we describe a new approach, directed at the use of synthetic selectophores, chosen as readily prepared and low cost structural analogues with recognition groups in similar three-dimensional arrangements as found in the target molecule. To validate the approach, a comparative study of selectophores related to the polyphenolic compound (E)-resveratrol has been undertaken using traditional and green chemical synthetic approaches. These molecular mimic compounds were employed as polymer templates and also as binding analytes to interrogate the recognition sites associated with the molecularly imprinted polymers. Importantly, the study confirms that the use of selectophores has the potential to confer practical advantages, including access to more efficient methods for selection and preparation of suitable template molecules with a broader range of molecular diversity, as well as delivering imprinted polymers capable of recognizing the target compound and structurally related products.


Talanta | 2016

Selectivity mapping of the binding sites of (E)-resveratrol imprinted polymers using structurally diverse polyphenolic compounds present in Pinot noir grape skins.

Shima N.N.S. Hashim; Lachlan J. Schwarz; Basil Danylec; Mahesh K. Potdar; Reinhard I. Boysen; Milton T.W. Hearn

This investigation describes a general procedure for the selectivity mapping of molecularly imprinted polymers, using (E)-resveratrol-imprinted polymers as the exemplar, and polyphenolic compounds present in Pinot noir grape skin extracts as the test compounds. The procedure is based on the analysis of samples generated before and after solid-phase extraction of (E)-resveratrol and other polyphenols contained within the Pinot noir grape skins using (E)-resveratrol-imprinted polymers. Capillary reversed-phase high-performance liquid chromatography (RP-HPLC) and electrospray ionisation tandem mass spectrometry (ESI MS/MS) was then employed for compound analysis and identification. Under optimised solid-phase extraction conditions, the (E)-resveratrol-imprinted polymer showed high binding affinity and selectivity towards (E)-resveratrol, whilst no resveratrol was bound by the corresponding non-imprinted polymer. In addition, quercetin-3-O-glucuronide and a dimer of catechin-methyl-5-furfuraldehyde, which share some structural features with (E)-resveratrol, were also bound by the (E)-resveratrol-imprinted polymer. Polyphenols that were non-specifically retained by both the imprinted and non-imprinted polymer were (+)-catechin, a B-type procyanidin and (-)-epicatechin. The compounds that did not bind to the (E)-resveratrol molecularly imprinted polymer had at least one of the following molecular characteristics in comparison to the (E)-resveratrol template: (i) different spatial arrangements of their phenolic hydroxyl groups, (ii) less than three or more than four phenolic hydroxyl groups, or (iii) contained a bulky substituent moiety. The results show that capillary RP-HPLC in conjunction with ESI MS/MS represent very useful techniques for mapping the selectivity of the binding sites of imprinted polymer. Moreover, this procedure permits performance monitoring of the characteristics of molecularly imprinted polymers intended for solid-phase extraction of bioactive and nutraceutical molecules from diverse agricultural waste sources.


Food Chemistry | 2019

A GC-MS untargeted metabolomics approach for the classification of chemical differences in grape juices based on fungal pathogen

Claudia Schueuermann; Christopher Steel; John Blackman; Andrew C. Clark; Lachlan J. Schwarz; Javier Moraga; Isidro G. Collado; Leigh M. Schmidtke

Fungal bunch rot of grapes leads to production of detrimental flavour compounds, some of which are well characterised but others remain unidentified. The current study uses an untargeted metabolomics approach to classify volatile profiles of grape juices based on the presence of different fungal pathogens. Individual grape berries were inoculated with Botrytis cinerea, Penicillium expansum, Aspergillus niger or A. carbonarius. Grape bunches were inoculated and blended with healthy fruit, to provide 10% (w/w) infected juice. Juices from the above sample batches were analysed by GC/MS. PLS-DA of the normalised summed mass ions indicated sample classification according to pathogen. Compounds identified from those mass ion matrices that had high discriminative value for classification included 1,5-dimethylnaphthalene and several unidentified sesquiterpenes that were relatively higher in B. cinerea infected samples. A. niger and A. carbonarius samples were relatively higher in 2-(4-hexyl-2,5-dioxo-2,5-dihydrofuran-3-yl)acetic acid, while P. expansum samples were higher in γ-nonalactone and m-cresol.

Collaboration


Dive into the Lachlan J. Schwarz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuanzhong Yang

Australian Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge