Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Baskaran Thyagarajan is active.

Publication


Featured researches published by Baskaran Thyagarajan.


Journal of Cell Biology | 2006

Rapidly inducible changes in phosphatidylinositol 4,5-bisphosphate levels influence multiple regulatory functions of the lipid in intact living cells

Péter Várnai; Baskaran Thyagarajan; Tibor Rohacs; Tamas Balla

Rapamycin (rapa)-induced heterodimerization of the FRB domain of the mammalian target of rapa and FKBP12 was used to translocate a phosphoinositide 5-phosphatase (5-ptase) enzyme to the plasma membrane (PM) to evoke rapid changes in phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P 2) levels. Rapa-induced PM recruitment of a truncated type IV 5-ptase containing only the 5-ptase domain fused to FKBP12 rapidly decreased PM PtdIns(4,5)P 2 as monitored by the PLCδ1PH-GFP fusion construct. This decrease was paralleled by rapid termination of the ATP-induced Ca2+ signal and the prompt inactivation of menthol-activated transient receptor potential melastatin 8 (TRPM8) channels. Depletion of PM PtdIns(4,5)P 2 was associated with a complete blockade of transferrin uptake and inhibition of epidermal growth factor internalization. None of these changes were observed upon rapa-induced translocation of an mRFP-FKBP12 fusion protein that was used as a control. These data demonstrate that rapid inducible depletion of PM PtdIns(4,5)P 2 is a powerful tool to study the multiple regulatory roles of this phospholipid and to study differential sensitivities of various processes to PtdIns(4,5)P 2 depletion.


The Journal of Neuroscience | 2007

Dual Regulation of TRPV1 by Phosphoinositides

Viktor Lukacs; Baskaran Thyagarajan; Péter Várnai; András Balla; Tamas Balla; Tibor Rohacs

The membrane phospholipid phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 or PIP2] regulates many ion channels. There are conflicting reports on the effect of PtdIns(4,5)P2 on transient receptor potential vanilloid 1 (TRPV1) channels. We show that in excised patches PtdIns(4,5)P2 and other phosphoinositides activate and the PIP2 scavenger poly-Lys inhibits TRPV1. TRPV1 currents undergo desensitization on exposure to high concentrations of capsaicin in the presence of extracellular Ca2+. We show that in the presence of extracellular Ca2+, capsaicin activates phospholipase C (PLC) in TRPV1-expressing cells, inducing depletion of both PtdIns(4,5)P2 and its precursor PtdIns(4)P (PIP). The PLC inhibitor U73122 and dialysis of PtdIns(4,5)P2 or PtdIns(4)P through the patch pipette inhibited desensitization of TRPV1, indicating that Ca2+-induced activation of PLC contributes to desensitization of TRPV1 by depletion of PtdIns(4,5)P2 and PtdIns(4)P. Selective conversion of PtdIns(4,5)P2 to PtdIns(4)P by a rapamycin-inducible PIP2 5-phosphatase did not inhibit TRPV1 at high capsaicin concentrations, suggesting a significant role for PtdIns(4)P in maintaining channel activity. Currents induced by low concentrations of capsaicin and moderate heat, however, were potentiated by conversion of PtdIns(4,5)P2 to PtdIns(4)P. Increasing PtdIns(4,5)P2 levels by coexpressing phosphatidylinositol-4-phosphate 5-kinase inhibited TRPV1 at low but not at saturating capsaicin concentrations. These data show that at low capsaicin concentrations and other moderate stimuli, PtdIns(4,5)P2 partially inhibits TRPV1 in a cellular context, but this effect is likely to be indirect, because it is not detectable in excised patches. We conclude that phosphoinositides have both inhibitory and activating effects on TRPV1, resulting in complex and distinct regulation at various stimulation levels.


PLOS ONE | 2009

Inorganic polyphosphate modulates TRPM8 channels

Eleonora Zakharian; Baskaran Thyagarajan; Robert J. French; Evgeny Pavlov; Tibor Rohacs

Polyphosphate (polyP) is an inorganic polymer built of tens to hundreds of phosphates, linked by high-energy phosphoanhydride bonds. PolyP forms complexes and modulates activities of many proteins including ion channels. Here we investigated the role of polyP in the function of the transient receptor potential melastatin 8 (TRPM8) channel. Using whole-cell patch-clamp and fluorescent calcium measurements we demonstrate that enzymatic breakdown of polyP by exopolyphosphatase (scPPX1) inhibits channel activity in human embryonic kidney and F-11 neuronal cells expressing TRPM8. We demonstrate that the TRPM8 channel protein is associated with polyP. Furthermore, addition of scPPX1 altered the voltage-dependence and blocked the activity of the purified TRPM8 channels reconstituted into planar lipid bilayers, where the activity of the channel was initiated by cold and menthol in the presence of phosphatidylinositol 4,5-biphosphate (PtdIns(4,5)P2). The biochemical analysis of the TRPM8 protein also uncovered the presence of poly-(R)-3-hydroxybutyrate (PHB), which is frequently associated with polyP. We conclude that the TRPM8 protein forms a stable complex with polyP and its presence is essential for normal channel activity.


Molecular Neurobiology | 2008

Phospholipase C mediated modulation of TRPV1 channels

Tibor Rohacs; Baskaran Thyagarajan; Viktor Lukacs

The transient receptor potential vanilloid type 1 (TRPV1) channels are involved in both thermosensation and nociception. They are activated by heat, protons, and capsaicin and modulated by a plethora of other agents. This review will focus on the consequences of phospholipase C (PLC) activation, with special emphasis on the effects of phosphatidylinositol 4,5-bisphosphate (PIP2) on these channels. Two opposing effects of PIP2 have been reported on TRPV1. PIP2 has been proposed to inhibit TRPV1, and relief from this inhibition was suggested to be involved in sensitization of these channels by pro-inflammatory agents. In excised patches, however, PIP2 was shown to activate TRPV1. Calcium flowing through TRPV1 activates PLC and the resulting depletion of PIP2 was proposed to play a role in capsaicin-induced desensitization of these channels. We will describe the data indicating involvement of PLC and PIP2 in sensitization and desensitization of TRPV1 and will also discuss other pathways potentially contributing to these two phenomena. We attempt to resolve the seemingly contradictory data by proposing that PIP2 can both activate and inhibit TRPV1 depending on the experimental conditions, more specifically on the level of stimulation of these channels. Finally, we also discuss data in the literature indicating that other TRP channels, TRPA1 and some members of the TRPC subfamily, may also be under a similar dual control by PIP2.


Journal of Biological Chemistry | 2008

Hydrolysis of Phosphatidylinositol 4,5-Bisphosphate Mediates Calcium-induced Inactivation of TRPV6 Channels

Baskaran Thyagarajan; Viktor Lukacs; Tibor Rohacs

TRPV6 is a member of the transient receptor potential superfamily of ion channels that facilitates Ca2+ absorption in the intestines. These channels display high selectivity for Ca2+, but in the absence of divalent cations they also conduct monovalent ions. TRPV6 channels have been shown to be inactivated by increased cytoplasmic Ca2+ concentrations. Here we studied the mechanism of this Ca2+-induced inactivation. Monovalent currents through TRPV6 substantially decreased after a 40-s application of Ca2+, but not Ba2+. We also show that Ca2+, but not Ba2+, influx via TRPV6 induces depletion of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 or PIP2) and the formation of inositol 1,4,5-trisphosphate. Dialysis of DiC8 PI(4,5)P2 through the patch pipette inhibited Ca2+-dependent inactivation of TRPV6 currents in whole-cell patch clamp experiments. PI(4,5)P2 also activated TRPV6 currents in excised patches. PI(4)P, the precursor of PI(4,5)P2, neither activated TRPV6 in excised patches nor had any effect on Ca2+-induced inactivation in whole-cell experiments. Conversion of PI(4,5)P2 to PI(4)P by a rapamycin-inducible PI(4,5)P2 5-phosphatase inhibited TRPV6 currents in whole-cell experiments. Inhibiting phosphatidylinositol 4 kinases with wortmannin decreased TRPV6 currents and Ca2+ entry into TRPV6-expressing cells. We propose that Ca2+ influx through TRPV6 activates phospholipase C and the resulting depletion of PI(4,5)P2 contributes to the inactivation of TRPV6.


British Journal of Pharmacology | 2016

Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel‐dependent mechanisms

Padmamalini Baskaran; Vivek Krishnan; Jun Ren; Baskaran Thyagarajan

The growing epidemic of obesity and metabolic diseases necessitates the development of novel strategies to prevent and treat such diseases. Current research suggests that browning of white adipose tissue (WAT) promotes energy expenditure to counter obesity. Recent research suggests that activation of the TRPV1 channels counters obesity. However, the mechanism by which activation of TRPV1 channels counters obesity still remains unclear.


Journal of Biological Chemistry | 2015

The TRPM8 Protein Is a Testosterone Receptor II. FUNCTIONAL EVIDENCE FOR AN IONOTROPIC EFFECT OF TESTOSTERONE ON TRPM8

Swapna Asuthkar; Lusine Demirkhanyan; Xiaohui Sun; Pia A. Elustondo; Vivek Krishnan; Padmamalini Baskaran; Kiran Kumar Velpula; Baskaran Thyagarajan; Evgeny Pavlov; Eleonora Zakharian

Background: TRPM8 channels are highly expressed in prostate tissues, where the role of this cold receptor is not well understood. Results: Testosterone activates TRPM8 in various cellular systems and in the planar lipid bilayers. Conclusion: TRPM8 is an ionotropic testosterone receptor. Significance: TRPM8 channels may be implicated in various physiological processes regulated by androgens. Testosterone is a key steroid hormone in the development of male reproductive tissues and the regulation of the central nervous system. The rapid signaling mechanism induced by testosterone affects numerous behavioral traits, including sexual drive, aggressiveness, and fear conditioning. However, the currently identified testosterone receptor(s) is not believed to underlie the fast signaling, suggesting an orphan pathway. Here we report that an ion channel from the transient receptor potential family, TRPM8, commonly known as the cold and menthol receptor is the major component of testosterone-induced rapid actions. Using cultured and primary cell lines along with the purified TRPM8 protein, we demonstrate that testosterone directly activates TRPM8 channel at low picomolar range. Specifically, testosterone induced TRPM8 responses in primary human prostate cells, PC3 prostate cancer cells, dorsal root ganglion neurons, and hippocampal neurons. Picomolar concentrations of testosterone resulted in full openings of the purified TRPM8 channel in planar lipid bilayers. Furthermore, acute applications of testosterone on human skin elicited a cooling sensation. Our data conclusively demonstrate that testosterone is an endogenous and highly potent agonist of TRPM8, suggesting a role of TRPM8 channels well beyond their well established function in somatosensory neurons. This discovery may further imply TRPM8 channel function in testosterone-dependent behavioral traits.


Journal of Biological Chemistry | 2015

The TRPM8 Protein Is a Testosterone Receptor I. BIOCHEMICAL EVIDENCE FOR DIRECT TRPM8-TESTOSTERONE INTERACTIONS

Swapna Asuthkar; Pia A. Elustondo; Lusine Demirkhanyan; Xiaohui Sun; Padmamalini Baskaran; Kiran Kumar Velpula; Baskaran Thyagarajan; Evgeny Pavlov; Eleonora Zakharian

Background: TRPM8 channels are highly expressed in prostate tissues, where the role of this cold receptor is not well understood. Results: Testosterone directly interacts with the TRPM8 protein. Conclusion: TRPM8 is a testosterone receptor. Significance: TRPM8 channels may be implicated in various physiological processes regulated by androgens. The transient receptor potential ion channel of the melastatin subfamily, TRPM8, is a major cold receptor in the peripheral nervous system. Along with the sensory neurons, the TRPM8 protein is highly expressed in the prostate epithelial cells, and this expression is regulated by androgens. Here we investigated the expression and intracellular localization of the TRPM8 channel in relationship to androgens. We performed experiments using human prostate tissues obtained from healthy individuals and patients with prostate cancer at various stages of the disease as well as in cultured cells. Using an immunohistochemistry approach, we detected an intensive colocalization pattern of the TRPM8 protein with endogenous androgens in all tissues tested, suggesting possible interactions. Co-immunoprecipitation experiments performed using cultured prostate epithelial cells, prostate cancer cells, and HEK-293 cells stably expressing TRPM8 further confirmed direct binding of the steroid hormone, testosterone, to the TRPM8 protein. Applications of picomolar concentrations of testosterone to the primary human prostate cells, endogenously expressing TRPM8, elicited Ca2+ responses and channel currents, and those were inhibited in the presence of TRPM8 antagonist, N-(2-aminoethyl)-N-(4-(benzyloxy)-3-methoxybenzyl)thiophene-2-carboxamide hydrochloride. These results indicate that the TRPM8 channel is physically associated with testosterone and suggest that, in addition to a genomic role, testosterone plays a role in direct regulation of the TRPM8 channel function.


Molecular Pharmacology | 2009

Phospholipase C-Mediated Regulation of Transient Receptor Potential Vanilloid 6 Channels: Implications in Active Intestinal Ca2+ Transport

Baskaran Thyagarajan; Bryan S. Benn; Sylvia Christakos; Tibor Rohacs

Transient receptor potential vanilloid 6 (TRPV6) channels play an important role in intestinal Ca2+ transport. These channels undergo Ca2+-induced inactivation. Here we show that Ca2+ flowing through these channels activates phospholipase C (PLC) leading to the depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) and formation of inositol 1,4,5-trisphosphate in TRPV6-expressing cells. PIP2 depletion was inhibited by the two structurally different PLC inhibitors 1-[6-[[17β-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122) and edelfosine. Ca2+-induced inactivation of TRPV6 was also prevented by the PLC inhibitors in whole-cell patch-clamp experiments. Ca2+ signals in TRPV6-expressing cells were transient upon restoration of extracellular Ca2+ but were rendered more sustained by the PLC inhibitors. Finally, intestinal Ca2+ transport in the everted duodenal sac assay was enhanced by edelfosine. These observations suggest that Ca2+-induced inactivation of TRPV6 limits intestinal Ca2+ absorption and raise the possibility that Ca2+ absorption can be enhanced pharmacologically by interfering with PLC activation.


Journal of Pharmacology and Experimental Therapeutics | 2009

Capsaicin Protects Mouse Neuromuscular Junctions from the Neuroparalytic Effects of Botulinum Neurotoxin A

Baskaran Thyagarajan; Natalia Krivitskaya; Joseph G. Potian; Kormakur Hognason; Carmen C. Garcia; Joseph J. McArdle

Botulinum neurotoxin A (BoNT/A), the most toxic, naturally occurring protein, cleaves synapse-associated protein of 25 kDa and inhibits acetylcholine release from motor nerve endings (MNEs). This leads to paralysis of skeletal muscles. Our study demonstrates that capsaicin protects mouse neuromuscular junctions from the neuroparalytic effects of BoNT/A. Bilateral injection of BoNT/A near the innervation of the Extensor digitorum longus (EDL) muscle of adult Swiss-Webster mice inhibited the toe spread reflex (TSR). However, when capsaicin was coinjected bilaterally, or injected 4 or 8 h before injecting BoNT/A, the TSR remained normal. In animals that were pretreated with capsazepine, capsaicin failed to protect against the neuroparalytic effects of BoNT/A. In vivo analyses demonstrated that capsaicin protected muscle functions and electromygraphic activity from the incapacitating effects of BoNT/A. The twitch response to nerve stimulation was greater for EDL preparations isolated from mice injected with capsaicin before BoNT/A. Capsaicin pretreatment also prevented the inhibitory effects of BoNT/A on end-plate currents. Furthermore, pretreatment of Neuro 2a cells with capsaicin significantly preserved labeling of synaptic vesicles by FM 1-43. This protective effect of capsaicin was observed only in the presence of extracellular Ca2+ and was inhibited by capsazepine. Immunohistochemistry demonstrated that MNEs express transient receptor potential protein of the vanilloid subfamily, TRPV1, the capsaicin receptor. Capsaicin pretreatment, in vitro, reduced nerve stimulation or KCl-induced uptake of BoNT/A into motor nerve endings and cholinergic Neuro 2a cells. These data demonstrate that capsaicin interacts with TRPV1 receptors on MNEs to reduce BoNT/A uptake via a Ca2+-dependent mechanism.

Collaboration


Dive into the Baskaran Thyagarajan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eleonora Zakharian

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge