Bat-El Lachmi
Israel Institute for Biological Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bat-El Lachmi.
Journal of Virology | 2006
Theodore Oliphant; Grant E. Nybakken; Michael Engle; Qing Xu; Christopher A. Nelson; Soila Sukupolvi-Petty; Anantha Marri; Bat-El Lachmi; Udy Olshevsky; Daved H. Fremont; Theodore C. Pierson; Michael S. Diamond
ABSTRACT Previous studies have demonstrated that monoclonal antibodies (MAbs) against an epitope on the lateral surface of domain III (DIII) of the West Nile virus (WNV) envelope (E) strongly protect against infection in animals. Herein, we observed significantly less efficient neutralization by 89 MAbs that recognized domain I (DI) or II (DII) of WNV E protein. Moreover, in cells expressing Fc γ receptors, many of the DI- and DII-specific MAbs enhanced infection over a broad range of concentrations. Using yeast surface display of E protein variants, we identified 25 E protein residues to be critical for recognition by DI- or DII-specific neutralizing MAbs. These residues cluster into six novel and one previously characterized epitope located on the lateral ridge of DI, the linker region between DI and DIII, the hinge interface between DI and DII, and the lateral ridge, central interface, dimer interface, and fusion loop of DII. Approximately 45% of DI-DII-specific MAbs showed reduced binding with mutations in the highly conserved fusion loop in DII: 85% of these (34 of 40) cross-reacted with the distantly related dengue virus (DENV). In contrast, MAbs that bound the other neutralizing epitopes in DI and DII showed no apparent cross-reactivity with DENV E protein. Surprisingly, several of the neutralizing epitopes were located in solvent-inaccessible positions in the context of the available pseudoatomic model of WNV. Nonetheless, DI and DII MAbs protect against WNV infection in mice, albeit with lower efficiency than DIII-specific neutralizing MAbs.
Archives of Virology | 1994
Menachem Halevy; Yair Akov; David Ben-Nathan; David Kobiler; Bat-El Lachmi; Shlomo Lustig
SummaryThe neuropathogenicity of West Nile virus (WNV) and two derived attenuated strains WN25 and WN25A, was studied in young adult ICR mice and in severe combined immunodeficient (SCID) mice. Similarity in serology and RNA fingerprints were found between WNV and WN25. The viral envelope proteins of the attenuates differed from WNV in their slower mobility in SDS-PAGE due probably to the presence of N-linked glycan. The three strains were lethal to ICR mice by intracerebral (IC) inoculation, but when inoculated intraperitoneally (IP), WNV caused viremia, invaded the CNS and was lethal, whereas the attenuates showed no viremia or invasion of the CNS. The attenuates elicited antibodies to comparable levels as WNV in IP-infected mice, conferring upon them immunity to IC challenge with the wild type. In IP-inoculated SCID mice the three strains exhibited similar high viremiae that lasted until death of the animals. All strains invaded the CNS and proliferated in the mouse brain to similar high titers, but differed largely in the time of invasion: WNV invaded the CNS of SCID mice (and two other mouse strains) much earlier than the attenuates, which showed large intervals in their time of invasion into individual mouse brains within the group. The data presented for SCID mice indicate that WN25 and WN25A have truly lost the neuroinvasive property, and that this property materialized by a prescribed, active process specific for WNV.
Archives of Virology | 1991
David Ben-Nathan; Bat-El Lachmi; Shlomo Lustig; G. Feuerstein
SummaryDehydroepiandrosterone (DHEA) has a significant protective effect in mice infected with West Nile virus (WNV), Sindbis virus neurovirulent (SVNI) and Semliki Forest virus (SFV). Mice injected subcutaneously (SC) with a single injection of DHEA (1 g/kg) on the same day or one day pre or post infection with WNV resulted in 40–50% mortality as compared to 100% in control injected mice (p<0.05). The drug was effective following a single SC injection or serial intraperitoneal (IP) injections (5–20mg/kg) on days 0, 2, 4, and 6 following virus inoculation. Moreover, DHEA injection not only reduced viremia and death rate, but also significantly delayed the onset of the disease and mortality. The titers of antivirus antibodies in surviving mice were very high. However, DHEA had no effect on WNV growth in BHK or Vero cell cultures. In this study it was shown that DHEA protects mice against WNV, SVNI and SFV lethal infection. Though the mechanism of the protective effect of DHEA is still unknown, it seems that DHEA can modify the host resistance mechanisms rather than the virus itself.
PLOS ONE | 2009
Ronit Rosenfeld; Hadar Marcus; Einat Ben-Arie; Bat-El Lachmi; Adva Mechaly; Shaul Reuveny; Orit Gat; Ohad Mazor; Arie Ordentlich
Several studies have demonstrated that the passive transfer of protective antigen (PA)-neutralizing antibodies can protect animals against Bacillus anthracis infection. The standard protocol for the isolation of PA-neutralizing monoclonal antibodies is based upon a primary selection of the highest PA-binders by ELISA, and usually yields only few candidates antibodies. We demonstrated that by applying a PA-neutralization functionality-based screen as the primary criterion for positive clones, it was possible to isolate more than 100 PA-neutralizing antibodies, some of which exhibited no measurable anti-PA titers in ELISA. Among the large panel of neutralizing antibodies identified, mAb 29 demonstrated the most potent activity, and was therefore chimerized. The variable region genes of the mAb 29 were fused to human constant region genes, to form the chimeric 29 antibody (cAb 29). Guinea pigs were fully protected against infection by 40LD50 B. anthracis spores following two separate administrations with 10 mg/kg of cAb 29: the first administration was given before the challenge, and a second dose was administered on day 4 following exposure. Moreover, animals that survived the challenge and developed endogenous PA-neutralizing antibodies with neutralizing titers above 100 were fully protected against repeat challenges with 40LD50 of B. anthracis spores. The data presented here emphasize the importance of toxin neutralization-based screens for the efficient isolation of protective antibodies that were probably overlooked in the standard screening protocol. The protective activity of the chimeric cAb 29 demonstrated in this study suggest that it may serve as an effective immunotherapeutic agent against anthrax.
PLOS ONE | 2014
Eran Diamant; Bat-El Lachmi; Adi Keren; Ada Barnea; Hadar Marcus; Shoshana Cohen; Alon Ben David; Ran Zichel
Botulinum neurotoxins (BoNT) are considered some of the most lethal known substances. There are seven botulinum serotypes, of which types A, B and E cause most human botulism cases. Anti-botulinum polyclonal antibodies (PAbs) are currently used for both detection and treatment of the disease. However, significant improvements in immunoassay specificity and treatment safety may be made using monoclonal antibodies (MAbs). In this study, we present an approach for the simultaneous generation of highly specific and neutralizing MAbs against botulinum serotypes A, B, and E in a single process. The approach relies on immunization of mice with a trivalent mixture of recombinant C-terminal fragment (Hc) of each of the three neurotoxins, followed by a parallel differential robotic hybridoma screening. This strategy enabled the cloning of seven to nine MAbs against each serotype. The majority of the MAbs possessed higher anti-botulinum ELISA titers than anti-botulinum PAbs and had up to five orders of magnitude greater specificity. When tested for their potency in mice, neutralizing MAbs were obtained for all three serotypes and protected against toxin doses of 10 MsLD50–500 MsLD50. A strong synergistic effect of up to 400-fold enhancement in the neutralizing activity was observed when serotype-specific MAbs were combined. Furthermore, the highly protective oligoclonal combinations were as potent as a horse-derived PAb pharmaceutical preparation. Interestingly, MAbs that failed to demonstrate individual neutralizing activity were observed to make a significant contribution to the synergistic effect in the oligoclonal preparation. Together, the trivalent immunization strategy and differential screening approach enabled us to generate highly specific MAbs against each of the A, B, and E BoNTs. These new MAbs may possess diagnostic and therapeutic potential.
Immunology | 2010
Orly Gershoni-Yahalom; Shimon Landes; Smadar Kleiman-Shoval; David Ben-Nathan; Michal Kam; Bat-El Lachmi; Yevgeny Khinich; Michael Simanov; Itzhak Samina; Anat Eitan; Irun R. Cohen; Bracha Rager-Zisman; Angel Porgador
The protective efficacy and immunogenicity of a chimeric peptide against West Nile virus (WNV) was evaluated. This virus is the aetiological agent of West Nile fever, which has recently emerged in the western hemisphere. The rapid spread of WNV throughout North America, as well as the constantly changing epidemiology and transmission of the virus by blood transfusion and transplantation, have raised major public‐health concerns. Currently, there are no effective treatments for WNV or vaccine for human use. We previously identified a novel, continuous B‐cell epitope from domain III of the WNV envelope protein, termed Ep15. To test whether this epitope can protect against WNV infection, we synthesized a linear chimeric peptide composed of Ep15 and the heat‐shock protein 60 peptide, p458. The p458 peptide is an effective carrier peptide for subunit vaccines against other infectious agents. We now report that mice immunized with the chimeric peptide, p458‐Ep15, were resistant to lethal challenges with three different WNV strains. Moreover, their brains were free of viral genome and infectious virus. Mice immunized with Ep15 alone or with p431‐Ep15, a control conjugate, were not protected. The chimeric p458‐Ep15 peptide induced WNV‐specific immunoglobulin G antibodies that neutralized the virus and induced the secretion of interferon‐γin vitro. Challenge of chimeric peptide‐immunized mice considerably enhanced WNV‐specific neutralizing antibodies. We conclude that this chimeric peptide can be used for formulation of a human vaccine against WNV.
Virology Journal | 2013
Nir Paran; Shlomo Lustig; Anat Zvi; Noam Erez; Tomer Israely; Sharon Melamed; Boaz Politi; David Ben-Nathan; Paula Schneider; Bat-El Lachmi; Ofir Israeli; Dana Stein; Reuven Levin; Udy Olshevsky
Vaccinia virus protein A33 (A33VACV) plays an important role in protection against orthopoxviruses, and hence is included in experimental multi-subunit smallpox vaccines. In this study we show that single-dose vaccination with recombinant Sindbis virus expressing A33VACV, is sufficient to protect mice against lethal challenge with vaccinia virus WR (VACV-WR) and ectromelia virus (ECTV) but not against cowpox virus (CPXV), a closely related orthopoxvirus. Moreover, a subunit vaccine based on the cowpox virus A33 ortholog (A33CPXV) failed to protect against cowpox and only partially protected mice against VACV-WR challenge. We mapped regions of sequence variation between A33VACV and A33CPXVand analyzed the role of such variations in protection. We identified a single protective region located between residues 104–120 that harbors a putative H-2Kd T cell epitope as well as a B cell epitope - a target for the neutralizing antibody MAb-1G10 that blocks spreading of extracellular virions. Both epitopes in A33CPXV are mutated and predicted to be non-functional. Whereas vaccination with A33VACV did not induce in-vivo CTL activity to the predicted epitope, inhibition of virus spread in-vitro, and protection from lethal VACV challenge pointed to the B cell epitope highlighting the critical role of residue L118 and of adjacent compensatory residues in protection. This epitope’s critical role in protection, as well as its modifications within the orthopoxvirus genus should be taken in context with the failure of A33 to protect against CPXV as demonstrated here. These findings should be considered when developing new subunit vaccines and monoclonal antibody based therapeutics against orthopoxviruses, especially variola virus, the etiologic agent of smallpox.
Virus Genes | 1998
Irit Davidson; Bat-El Lachmi; Y. Weisman
Turkey meningoencephalitis virus (TMEV) causes paralysis and mortality in turkeys. Because the classical diagnostic methods are complicated, we developed the RT-PCR as a new molecular diagnostic method. Since the nucleic acid sequence of TMEV is unknown, the first step in developing the RT-PCR relied on conserved sequences of viruses belonging to the Flaviviridae family, in which TMEV has been classified serologically. Using primers from the NS5 gene, three amplification products of TMEV RNA were obtained (125 bp, 181 bp and 800 bp). Their sequences were homologous to one another and to the NS5 gene of other flaviviruses.
Archive | 2010
Nir Paran; Shlomo Lustig; Anat Zvi; Tomer Israely; Sharon Melamed; Noam Erez; Boaz Politi; David Ben-Nathan; Paula Schneider; Bat-El Lachmi; Ofir Israeli; Dana Stein; Reuven Levin; Udy Olshevsky
Immunization of BALB/c mice with vaccinia virus protein A33 (A33VACV) protects mice from intranasal challenge with the WR strain of vaccinia virus or with ectromelia virus making A33 an important candidate to be included in experimental smallpox subunit vaccines. Single vaccination with a recombinant Sindbis virus expressing A33VACV protect mice against lethal VACV-WR and ectromelia virus (ECTV) but not against the closely related cowpox virus (CPXV). Furthermore, even recombinant Sindbis virus expressing the cowpox virus A33 ortholog (A33CPXV) failed to protect either against cowpox or against VACV-WR challenge. Our attempts to map the regions which may account for this differential behavior were directed against a region of difference between the two orthologs. A stretch of 7 amino acids in A33 was mapped as important for protection which contain the following changes in A33CPXV: L112F, Q117K and L118S. This region maps to a single putative prevalent 9-mer CTL epitope with L112 as an essential anchoring residue, and a major target epitope for neutralizing antibodies encompassing L118. Vaccination with A33 harboring these individual substitutions highlighted the crucial role of L118 in induction of protective immunity.
Viral Immunology | 2000
Shlomo Lustig; Udy Olshevsky; David Ben-Nathan; Bat-El Lachmi; Mertyn Malkinson; David Kobiler; Menachem Halevy