Beat Haenni
University of Bern
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Beat Haenni.
Anatomy and Embryology | 1993
Sybill Patan; Beat Haenni; Peter H. Burri
SummaryThe aim of our investigations was to test whether the chicken chorio-allantoic membrane (CAM) could be an adequate in vivo model for a new mode of capillary growth, originally described in the rat lung and termed intussusceptive microvascular growth. According to that concept the capillary system does not grow by sprouting of vessels, but expands by insertion of transcapillary tissue pillars or posts which form new intercapillary meshes. In the present study, we observed slender transcapillary tissue pillars with diameters around 1 μm in the CAM by in vivo microscopy, and analyzed their ultrastructure by transmission electron microscopic investigation of serial sections. The pillars corresponded in size to those previously described in rat lung microvasculature. On day 7, the pillar core contained endothelial-, endothelial-like cells and collagen fibers, and on day 12 additionally chorionic epithelial cells. As a hypothesis we propose that slender cytoplasmic extensions of endothelial cells, heavily interdigitated in the post area and often projecting into the vascular lumen, could initiate the first step of pillar formation, i.e., interconnect opposite capillary walls. During both stages of development endothelial-like cells were observed in close relationship with the pillars. These cells seem to be relevant for tissue post completion and growth, as they were found to invade the core of the pillars. From the localization of the interendothelial junctions in the post region, a certain similarity to the concept proposed for the lung can be found. The observations confirm that the CAM is a very suitable material for the in vivo investigation of intussusceptive capillary growth.
Journal of Periodontology | 2012
Richard J. Miron; Dieter D. Bosshardt; Erik Hedbom; Yufeng Zhang; Beat Haenni; Daniel Buser; Anton Sculean
BACKGROUND The use of various combinations of enamel matrix derivative (EMD) and grafting materials has been shown to promote periodontal wound healing/regeneration. However, the downstream cellular behavior of periodontal ligament (PDL) cells and osteoblasts has not yet been studied. Furthermore, it is unknown to what extent the bleeding during regenerative surgery may influence the adsorption of exogenous proteins to the surface of bone grafting materials and the subsequent cellular behavior. In the present study, the aim is to test EMD adsorption to the surface of natural bone mineral (NBM) particles in the presence of blood and determine the effect of EMD coating to NBM particles on downstream cellular pathways, such as adhesion, proliferation, and differentiation of primary human osteoblasts and PDL cells. METHODS NBM particles were precoated in various settings with EMD or human blood and analyzed for protein adsorption patterns via fluorescent imaging and high-resolution immunocytochemistry with an anti-EMD antibody. Cell attachment and cell proliferation were quantified using fluorescent double-stranded DNA-binding dye. Cell differentiation was analyzed using real-time polymerase chain reaction for genes encoding runt-related transcription factor 2, alkaline phosphatase (ALP), osteocalcin (OC), and collagen1α1 (COL1A1), and mineralization was assessed using red dye staining. RESULTS Analysis of cell attachment and cell proliferation revealed significantly higher osteoblast and PDL cell attachment on EMD-coated surfaces when compared with control and blood-coated surfaces. EMD also stimulated release of growth factors and cytokines, including bone morphogenetic protein 2 and transforming growth factor β1. Moreover, there were significantly higher mRNA levels of osteoblast differentiation markers, including COL1A1, ALP, and OC, in osteoblasts and PDL cells cultured on EMD-coated NBM particles. CONCLUSION The present results suggest that 1) EMD enhances osteoblast and PDL cell attachment, proliferation, and differentiation on NBM particles, and 2) blood contamination of the grafting material before mixing with EMD may inhibit EMD adsorption.
Respiratory Physiology & Neurobiology | 2003
Peter H. Burri; Beat Haenni; Stefan A. Tschanz; Andrew N. Makanya
An utrastructural morphometric study of the postnatally remodelling lungs of the quokka wallaby (Setonix brachyurus) was undertaken. Allometric scaling of the volumes of the parenchymal components against body mass was performed. Most parameters showed a positive correlation with body mass in all the developmental stages, except the volume of type II pneumocytes during the alveolar stage. The interstitial tissue and type II cell volumes increased slightly faster than body mass in the saccular stage, their growth rates declining in the alveolar stage. Conversely, type I pneumocyte volumes increased markedly in both the saccular and alveolar stages. Both capillary and endothelial volumes as well as the capillary and airspace surface areas showed highest rates of increase during the alveolar stage, at which time the rate was notably higher than that of the body mass. The pulmonary diffusion capacity increased gradually, the rate being highest in the alveolar stage and the adult values attained were comparable to those of eutherians.
PLOS ONE | 2014
Lars Knudsen; Elena N. Atochina-Vasserman; Chang-Jiang Guo; Pamela Scott; Beat Haenni; Michael F. Beers; Matthias Ochs; Andrew J. Gow
Rationale Surfactant protein D (SP-D) has important immuno-modulatory properties. The absence of SP-D results in an inducible NO synthase (iNOS, coded by NOS2 gene) related chronic inflammation, development of emphysema-like pathophysiology and alterations of surfactant homeostasis. Objective In order to test the hypothesis that SP-D deficiency related abnormalities in pulmonary structure and function are a consequence of iNOS induced inflammation, we generated SP-D and iNOS double knockout mice (DiNOS). Methods Structural data obtained by design-based stereology to quantify the emphysema-like phenotype and disturbances of the intracellular surfactant were correlated to invasive pulmonary function tests and inflammatory markers including activation markers of alveolar macrophages and compared to SP-D (Sftpd−/−) and iNOS single knockout mice (NOS2−/−) as well as wild type (WT) littermates. Measurements and Results DiNOS mice had reduced inflammatory cells in BAL and BAL-derived alveolar macrophages showed an increased expression of markers of an alternative activation as well as reduced inflammation. As evidenced by increased alveolar numbers and surface area, emphysematous changes were attenuated in DiNOS while disturbances of the surfactant system remained virtually unchanged. Sftpd−/− demonstrated alterations of intrinsic mechanical properties of lung parenchyma as shown by reduced stiffness and resistance at its static limits, which could be corrected by additional ablation of NOS2 gene in DiNOS. Conclusion iNOS related inflammation in the absence of SP-D is involved in the emphysematous remodeling leading to a loss of alveoli and associated alterations of elastic properties of lung parenchyma while disturbances of surfactant homeostasis are mediated by different mechanisms.
Journal of Anatomy | 2007
Andrew N. Makanya; Stefan A. Tschanz; Beat Haenni; Peter H. Burri
A morphological and morphometric study of the lung of the newborn quokka wallaby (Setonix brachyurus) was undertaken to assess its morphofunctional status at birth. Additionally, skin structure and morphometry were investigated to assess the possibility of cutaneous gas exchange. The lung was at canalicular stage and comprised a few conducting airways and a parenchyma of thick‐walled tubules lined by stretches of cuboidal pneumocytes alternating with squamous epithelium, with occasional portions of thin blood–gas barrier. The tubules were separated by abundant intertubular mesenchyme, aggregations of developing capillaries and mesenchymal cells. Conversion of the cuboidal pneumocytes to type I cells occurred through cell broadening and lamellar body extrusion. Superfluous cuboidal cells were lost through apoptosis and subsequent clearance by alveolar macrophages. The establishment of the thin blood–gas barrier was established through apposition of the incipient capillaries to the formative thin squamous epithelium. The absolute volume of the lung was 0.02 ± 0.001 cm3 with an air space surface area of 4.85 ± 0.43 cm2. Differentiated type I pneumocytes covered 78% of the tubular surface, the rest 22% going to long stretches of type II cells, their precursors or low cuboidal transitory cells with sparse lamellar bodies. The body weight‐related diffusion capacity was 2.52 ± 0.56 mL O2 min−1 kg−1. The epidermis was poorly developed, and measured 29.97 ± 4.88 µm in thickness, 13% of which was taken by a thin layer of stratum corneum, measuring 4.87 ± 0.98 µm thick. Superficial capillaries were closely associated with the epidermis, showing the possibility that the skin also participated in some gaseous exchange. Qualitatively, the neonate quokka lung had the basic constituents for gas exchange but was quantitatively inadequate, implying the significance of percutaneous gas exchange.
PLOS Pathogens | 2016
Roman Trikin; Nicholas Doiron; Anneliese Hoffmann; Beat Haenni; Martin Jakob; Achim Schnaufer; Bernd Schimanski; Benoît Zuber; Torsten Ochsenreiter
Trypanosomes show an intriguing organization of their mitochondrial DNA into a catenated network, the kinetoplast DNA (kDNA). While more than 30 proteins involved in kDNA replication have been described, only few components of kDNA segregation machinery are currently known. Electron microscopy studies identified a high-order structure, the tripartite attachment complex (TAC), linking the basal body of the flagellum via the mitochondrial membranes to the kDNA. Here we describe TAC102, a novel core component of the TAC, which is essential for proper kDNA segregation during cell division. Loss of TAC102 leads to mitochondrial genome missegregation but has no impact on proper organelle biogenesis and segregation. The protein is present throughout the cell cycle and is assembled into the newly developing TAC only after the pro-basal body has matured indicating a hierarchy in the assembly process. Furthermore, we provide evidence that the TAC is replicated de novo rather than using a semi-conservative mechanism. Lastly, we demonstrate that TAC102 lacks an N-terminal mitochondrial targeting sequence and requires sequences in the C-terminal part of the protein for its proper localization.
Developmental and Comparative Immunology | 2014
Lucia Kuhn-Nentwig; Lukas S. Kopp; Wolfgang Nentwig; Beat Haenni; Kathrin Streitberger; Stefan Schürch; Johann Schaller
The most abundant cell types in the hemolymph of Cupiennius salei are plasmatocytes (70-80%) and granulocytes (20-30%). Both cells differ in shape, cytochemical and transmission electron microscopy staining of their cytoplasma and granules. According to MALDI-IMS (matrix-assisted laser desorption ionisation-mass spectrometry imaging), granulocytes exhibit ctenidin 1 (9510 Da) and ctenidin 3 (9568 Da), SIBD-1 (8675 Da), and unknown peptides with masses of 2207 and 6239 Da. Plasmatocytes exhibit mainly a mass of 6908 Da. Unknown peptides with masses of 1546 and 1960 Da were detected in plasmatocytes and granulocytes. Transmission electron microscopy confirms the presence of two compounds in one granule and cytochemical staining (light microscopy) tends to support this view. Two further hemocyte types (cyanocytes containing hemocyanin and prehemocytes as stem cells) are only rarely detected in the hemolymph. These four hemocyte types constitute the cellular part of the spider immune system and this is discussed in view of arachnid hemocyte evolution.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2015
Lars Knudsen; Elena N. Atochina-Vasserman; Christopher B. Massa; Bastian Birkelbach; Chang-Jiang Guo; Pamela Scott; Beat Haenni; Michael F. Beers; Matthias Ochs; Andrew J. Gow
Surfactant protein D (SP-D) modulates the lungs immune system. Its absence leads to NOS2-independent alveolar lipoproteinosis and NOS2-dependent chronic inflammation, which is critical for early emphysematous remodeling. With aging, SP-D knockout mice develop an additional interstitial fibrotic component. We hypothesize that this age-related interstitial septal wall remodeling is mediated by NOS2. Using invasive pulmonary function testing such as the forced oscillation technique and quasistatic pressure-volume perturbation and design-based stereology, we compared 29-wk-old SP-D knockout (Sftpd(-/-)) mice, SP-D/NOS2 double-knockout (DiNOS) mice, and wild-type mice (WT). Structural changes, including alveolar epithelial surface area, distribution of septal wall thickness, and volumes of septal wall components (alveolar epithelium, interstitial tissue, and endothelium) were quantified. Twenty-nine-week-old Sftpd(-/-) mice had preserved lung mechanics at the organ level, whereas elastance was increased in DiNOS. Airspace enlargement and loss of surface area of alveolar epithelium coexist with increased septal wall thickness in Sftpd(-/-) mice. These changes were reduced in DiNOS, and compared with Sftpd(-/-) mice a decrease in volumes of interstitial tissue and alveolar epithelium was found. To understand the effects of lung pathology on measured lung mechanics, structural data were used to inform a computational model, simulating lung mechanics as a function of airspace derecruitment, septal wall destruction (loss of surface area), and septal wall thickening. In conclusion, NOS2 mediates remodeling of septal walls, resulting in deposition of interstitial tissue in Sftpd(-/-). Forward modeling linking structure and lung mechanics describes the complex mechanical properties by parenchymatous destruction (emphysema), interstitial remodeling (septal wall thickening), and altered recruitability of acinar airspaces.
Respiratory Physiology & Neurobiology | 2003
Andrew N. Makanya; Beat Haenni; Peter H. Burri
The postnatally developing lungs of the quokka wallaby, Setonix brachyurus, were investigated macroscopically and by light microscopic morphometry. Lung, parenchymal and non-parenchymal volumes as well as the components of the latter two were analysed by regression analysis. The lungs comprised a single undivided left lung and a right lung with an adherent accessory lobe. Septal tissue growth was most remarkable in the canalicular and saccular stages. Between mid-canalicular stage and the saccular stage, the lung volume increased 2-fold, mainly due to airspace expansion, coupled with septal tissue thinning. The non-parenchymal vascular volume increase accelerated in the successive developmental stages while the airway and connective tissue volumes progressed in a decreasing order, being highest in the canalicular and saccular stages and lowest in the alveolar stage. Growth and remodelling of the alveolar septa occurred simultaneously with airspace subdivision. Airspace expansion accelerated during the stage of microvascular maturation, when most other parameters showed the least rate of increase.
PLOS Pathogens | 2017
Sandro Käser; Mathilde Willemin; Felix Schnarwiler; Bernd Schimanski; Daniel Poveda-Huertes; Silke Oeljeklaus; Beat Haenni; Benoît Zuber; Bettina Warscheid; Christof Meisinger; André Schneider
Mitochondria cannot form de novo but require mechanisms that mediate their inheritance to daughter cells. The parasitic protozoan Trypanosoma brucei has a single mitochondrion with a single-unit genome that is physically connected across the two mitochondrial membranes with the basal body of the flagellum. This connection, termed the tripartite attachment complex (TAC), is essential for the segregation of the replicated mitochondrial genomes prior to cytokinesis. Here we identify a protein complex consisting of three integral mitochondrial outer membrane proteins—TAC60, TAC42 and TAC40—which are essential subunits of the TAC. TAC60 contains separable mitochondrial import and TAC-sorting signals and its biogenesis depends on the main outer membrane protein translocase. TAC40 is a member of the mitochondrial porin family, whereas TAC42 represents a novel class of mitochondrial outer membrane β-barrel proteins. Consequently TAC40 and TAC42 contain C-terminal β-signals. Thus in trypanosomes the highly conserved β-barrel protein assembly machinery plays a major role in the biogenesis of its unique mitochondrial genome segregation system.