Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernd Schimanski is active.

Publication


Featured researches published by Bernd Schimanski.


Eukaryotic Cell | 2005

Highly Efficient Tandem Affinity Purification of Trypanosome Protein Complexes Based on a Novel Epitope Combination

Bernd Schimanski; Tu N. Nguyen; Arthur Günzl

ABSTRACT Tandem affinity purification (TAP) allows for rapid and efficient purification of epitope-tagged protein complexes from crude extracts under native conditions. The method was established in yeast and has been successfully applied to other organisms, including mammals and trypanosomes. However, we found that the original method, which is based on the TAP tag, consisting of a duplicate protein A epitope, a tobacco etch virus protease cleavage site, and the calmodulin-binding peptide (CBP), did not yield enough recovery of transcription factor SNAPc (for small nuclear RNA-activating protein complex) from crude trypanosome extracts for protein identification. Specifically, the calmodulin affinity chromatography step proved to be inefficient. To overcome this problem, we replaced CBP by the protein C epitope (ProtC) and termed this new epitope combination PTP tag. ProtC binds with high affinity to the monoclonal antibody HPC4, which has the unique property of requiring calcium for antigen recognition. Thus, analogous to the calcium-dependent CBP-calmodulin interaction, ProtC-tagged proteins can be released from immobilized HPC4 by a chelator of divalent cations. While this property was retained, epitope substitution improved purification in our experiments by eliminating the inefficiency of calmodulin affinity chromatography and by providing an alternative way of elution using the ProtC peptide in cases where EGTA inactivated protein function. Furthermore, HPC4 allowed highly sensitive and specific detection of ProtC-tagged proteins after protease cleavage. Thus far, we have successfully purified and characterized the U1 small nuclear ribonucleoprotein particle, the transcription factor complex TATA-binding protein related factor 4 (TRF4)/SNAPc/transcription factor IIA (TFIIA), and RNA polymerase I of Trypanosoma brucei.


Eukaryotic Cell | 2003

RNA Polymerase I Transcribes Procyclin Genes and Variant Surface Glycoprotein Gene Expression Sites in Trypanosoma brucei

Arthur Günzl; Thomas Bruderer; Gabriele Laufer; Bernd Schimanski; Lan-Chun Tu; Hui-Min Chung; Pei-Tseng Lee; Mary Gwo-Shu Lee

ABSTRACT In eukaryotes, RNA polymerase (pol) I exclusively transcribes the large rRNA gene unit (rDNA) and mRNA is synthesized by RNA pol II. The African trypanosome, Trypanosoma brucei, represents an exception to this rule. In this organism, transcription of genes encoding the variant surface glycoprotein (VSG) and the procyclins is resistant to α-amanitin, indicating that it is mediated by RNA pol I, while other protein-coding genes are transcribed by RNA pol II. To obtain firm proof for this concept, we generated a T. brucei cell line which exclusively expresses protein C epitope-tagged RNA pol I. Using an anti-protein C immunoaffinity matrix, we specifically depleted RNA pol I from transcriptionally active cell extracts. The depletion of RNA pol I impaired in vitro transcription initiated at the rDNA promoter, the GPEET procyclin gene promoter, and a VSG gene expression site promoter but did not affect transcription from the spliced leader (SL) RNA gene promoter. Fittingly, induction of RNA interference against the RNA pol I largest subunit in insect-form trypanosomes significantly reduced the relative transcriptional efficiency of rDNA, procyclin genes, and VSG expression sites in vivo whereas that of SL RNA, αβ-tubulin, and heat shock protein 70 genes was not affected. Our studies unequivocally show that T. brucei harbors a multifunctional RNA pol I which, in addition to transcribing rDNA, transcribes procyclin genes and VSG gene expression sites.


Molecular and Cellular Biology | 2005

Characterization of a multisubunit transcription factor complex essential for spliced-leader RNA gene transcription in Trypanosoma brucei.

Bernd Schimanski; Tu N. Nguyen; Arthur Günzl

ABSTRACT In the unicellular human parasites Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp., the spliced-leader (SL) RNA is a key molecule in gene expression donating its 5′-terminal region in SL addition trans splicing of nuclear pre-mRNA. While there is no evidence that this process exists in mammals, it is obligatory in mRNA maturation of trypanosomatid parasites. Hence, throughout their life cycle, these organisms crucially depend on high levels of SL RNA synthesis. As putative SL RNA gene transcription factors, a partially characterized small nuclear RNA-activating protein complex (SNAPc) and the TATA-binding protein related factor 4 (TRF4) have been identified thus far. Here, by tagging TRF4 with a novel epitope combination termed PTP, we tandem affinity purified from crude T. brucei extracts a stable and transcriptionally active complex of six proteins. Besides TRF4 these were identified as extremely divergent subunits of SNAPc and of transcription factor IIA (TFIIA). The latter finding was unexpected since genome databases of trypanosomatid parasites appeared to lack general class II transcription factors. As we demonstrate, the TRF4/SNAPc/TFIIA complex binds specifically to the SL RNA gene promoter upstream sequence element and is absolutely essential for SL RNA gene transcription in vitro.


PLOS ONE | 2011

Alba-domain proteins of Trypanosoma brucei are cytoplasmic RNA-binding proteins that interact with the translation machinery

Jan Mani; Andreas Güttinger; Bernd Schimanski; Manfred Heller; Alvaro Acosta-Serrano; Pascale Pescher; Gerald F. Späth; Isabel Roditi

Trypanosoma brucei and related pathogens transcribe most genes as polycistronic arrays that are subsequently processed into monocistronic mRNAs. Expression is frequently regulated post-transcriptionally by cis-acting elements in the untranslated regions (UTRs). GPEET and EP procyclins are the major surface proteins of procyclic (insect midgut) forms of T. brucei. Three regulatory elements common to the 3′ UTRs of both mRNAs regulate mRNA turnover and translation. The glycerol-responsive element (GRE) is unique to the GPEET 3′ UTR and regulates its expression independently from EP. A synthetic RNA encompassing the GRE showed robust sequence-specific interactions with cytoplasmic proteins in electromobility shift assays. This, combined with column chromatography, led to the identification of 3 Alba-domain proteins. RNAi against Alba3 caused a growth phenotype and reduced the levels of Alba1 and Alba2 proteins, indicative of interactions between family members. Tandem-affinity purification and co-immunoprecipitation verified these interactions and also identified Alba4 in sub-stoichiometric amounts. Alba proteins are cytoplasmic and are recruited to starvation granules together with poly(A) RNA. Concomitant depletion of all four Alba proteins by RNAi specifically reduced translation of a reporter transcript flanked by the GPEET 3′ UTR. Pulldown of tagged Alba proteins confirmed interactions with poly(A) binding proteins, ribosomal protein P0 and, in the case of Alba3, the cap-binding protein eIF4E4. In addition, Alba2 and Alba3 partially cosediment with polyribosomes in sucrose gradients. Alba-domain proteins seem to have exhibited great functional plasticity in the course of evolution. First identified as DNA-binding proteins in Archaea, then in association with nuclear RNase MRP/P in yeast and mammalian cells, they were recently described as components of a translationally silent complex containing stage-regulated mRNAs in Plasmodium. Our results are also consistent with stage-specific regulation of translation in trypanosomes, but most likely in the context of initiation.


The EMBO Journal | 2007

Multifunctional class I transcription in Trypanosoma brucei depends on a novel protein complex

Jens Brandenburg; Bernd Schimanski; Everson Nogoceke; Tu N. Nguyen; Julio C. Padovan; Brian T. Chait; George A.M. Cross; Arthur Günzl

The vector‐borne, protistan parasite Trypanosoma brucei is the only known eukaryote with a multifunctional RNA polymerase I that, in addition to ribosomal genes, transcribes genes encoding the parasites major cell‐surface proteins—the variant surface glycoprotein (VSG) and procyclin. In the mammalian bloodstream, antigenic variation of the VSG coat is the parasites means to evade the immune response, while procyclin is necessary for effective establishment of trypanosome infection in the fly. Moreover, the exceptionally high efficiency of mono‐allelic VSG expression is essential to bloodstream trypanosomes since its silencing caused rapid cell‐cycle arrest in vitro and clearance of parasites from infected mice. Here we describe a novel protein complex that recognizes class I promoters and is indispensable for class I transcription; it consists of a dynein light chain and six polypeptides that are conserved only among trypanosomatid parasites. In accordance with an essential transcriptional function of the complex, silencing the expression of a key subunit was lethal to bloodstream trypanosomes and specifically affected the abundance of rRNA and VSG mRNA. The complex was dubbed class I transcription factor A.


Molecular and Cellular Biology | 2007

Active RNA Polymerase I of Trypanosoma brucei Harbors a Novel Subunit Essential for Transcription

Tu N. Nguyen; Bernd Schimanski; Arthur Günzl

ABSTRACT A unique characteristic of the protistan parasite Trypanosoma brucei is a multifunctional RNA polymerase I which, in addition to synthesizing rRNA as in other eukaryotes, transcribes gene units encoding the major cell surface antigens variant surface glycoprotein and procyclin. Thus far, purification of this enzyme has revealed nine orthologues of known subunits but no active enzyme. Here, we have epitope tagged the specific subunit RPB6z and tandem affinity purified RNA polymerase I from crude extract. The purified enzyme was active in both a nonspecific and a promoter-dependent transcription assay and exhibited enriched protein bands with apparent sizes of 31, 29, and 27 kDa. p31 and its trypanosomatid orthologues were identified, but their amino acid sequences have no similarity to proteins of other eukaryotes, nor do they contain a conserved sequence motif. Nevertheless, p31 cosedimented with purified RNA polymerase I, and RNA interferance-mediated silencing of p31 was lethal, affecting the abundance of rRNA. Moreover, extract of p31-silenced cells exhibited a specific defect in transcription of class I templates, which was remedied by the addition of purified RNA polymerase I, and an anti-p31 serum completely blocked RNA polymerase I-mediated transcription. We therefore dubbed this novel functional component of T. brucei RNA polymerase I TbRPA31.


Eukaryotic Cell | 2007

Spliced leader RNA gene transcription in Trypanosoma brucei requires transcription factor TFIIH.

Ju Huck Lee; Tu N. Nguyen; Bernd Schimanski; Arthur Günzl

ABSTRACT Trypanosomatid parasites share a gene expression mode which differs greatly from that of their human and insect hosts. In these unicellular eukaryotes, protein-coding genes are transcribed polycistronically and individual mRNAs are processed from precursors by spliced leader (SL) trans splicing and polyadenylation. In trans splicing, the SL RNA is consumed through a transfer of its 5′-terminal part to the 5′ end of mRNAs. Since all mRNAs are trans spliced, the parasites depend on strong and continuous SL RNA synthesis mediated by RNA polymerase II. As essential factors for SL RNA gene transcription in Trypanosoma brucei, the general transcription factor (GTF) IIB and a complex, consisting of the TATA-binding protein-related protein 4, the small nuclear RNA-activating protein complex, and TFIIA, were recently identified. Although T. brucei TFIIA and TFIIB are extremely divergent to their counterparts in other eukaryotes, their characterization suggested that trypanosomatids do form a class II transcription preinitiation complex at the SL RNA gene promoter and harbor orthologues of other known GTFs. TFIIH is a GTF which functions in transcription initiation, DNA repair, and cell cycle control. Here, we investigated whether a T. brucei TFIIH is important for SL RNA gene transcription and found that silencing the expression of the highly conserved TFIIH subunit XPD in T. brucei affected SL RNA gene synthesis in vivo, and depletion of this protein from extract abolished SL RNA gene transcription in vitro. Since we also identified orthologues of the TFIIH subunits XPB, p52/TFB2, and p44/SSL1 copurifying with TbXPD, we concluded that the parasite harbors a TFIIH which is indispensable for SL RNA gene transcription.


Molecular and Biochemical Parasitology | 2003

The second largest subunit of Trypanosoma brucei's multifunctional RNA polymerase I has a unique N-terminal extension domain.

Bernd Schimanski; Birgit Klumpp; Gabriele Laufer; Richard J. Marhöfer; Paul M. Selzer; Arthur Günzl

In the protist parasite Trypanosoma brucei, RNA polymerase (pol) I transcribes the large ribosomal RNA gene unit and, in addition, variant surface glycoprotein gene expression sites and procyclin gene transcription units. The multifunctional role of RNA pol I in this organism is unique among eukaryotes, but only its largest subunit TbRPA1 has been characterized thus far. We have recently established the procyclic cell line RPIC which exclusively expresses RNA pol I tagged with the protein C epitope at the TbRPA1 C-terminus. In the present study, we prepared RPIC cell extracts and immunopurified RNA pol I using anti-protein C affinity matrix under high stringency conditions. We were able to identify five specific polypeptides on a silver-stained polyacrylamide-SDS gel with apparent molecular weights of 200, 180, 55, 29, and 22 kDa. Interestingly, the second largest subunit, TbRPA2, is 42-58 kDa larger than counterparts of other organisms. We have cloned and sequenced the complete TbRPA2 cDNA and found an open reading frame for a polypeptide of 179.5 kDa. The deduced amino acid sequence of TbRPA2 contains a unique N-terminal domain of approximately 250 amino acids. By raising a polyclonal antibody against a N-terminal peptide sequence of TbRPA2, we could specifically detect this polypeptide in immunoblots showing that it co-purifies with epitope-tagged TbRPA1. Moreover, we identified the homologous gene sequence LmRPA2 in Leishmania major and found that it encodes a homologous extension domain. Therefore, the N-terminal extra domain in trypanosomatid RPA2 polypeptides may serve a parasite-specific function.


Current protocols in protein science | 2009

Tandem Affinity Purification of Proteins

Arthur Günzl; Bernd Schimanski

Tandem affinity purification (TAP) is a very efficient method to isolate proteins, protein complexes, or ribonucleoprotein particles from crude extracts. The method depends on the expression of one protein component fused N‐ or C‐terminally to a TAP tag in the organism of interest. The TAP tag is a composite tag consisting of two different epitope domains and a protease cleavage site, and it facilitates the purification of the tagged protein in two consecutive, high‐affinity chromatography steps. Combined, the two steps are typically so efficient that a protein complex can be purified virtually to homogeneity without the need for protein overexpression. If the tag does not interfere with protein function, TAP is likely to yield an intact protein complex because all steps of the procedure are carried out under nondenaturing conditions. In this unit, a TAP procedure is detailed which employs a novel epitope combination termed PTP. Curr. Protoc. Protein Sci. 55:19.19.1‐19.19.16.


Molecular Microbiology | 2013

Nucleolar proteins regulate stage-specific gene expression and ribosomal RNA maturation in Trypanosoma brucei.

Gabriela Schumann Burkard; Sandro Käser; Patrícia Rosa de Araújo; Bernd Schimanski; Arunasalam Naguleswaran; Sebastian Knüsel; Manfred Heller; Isabel Roditi

Different life‐cycle stages of Trypanosoma brucei are characterized by stage‐specific glycoprotein coats. GPEET procyclin, the major surface protein of early procyclic (insect midgut) forms, is transcribed in the nucleolus by RNA polymerase I as part of a polycistronic precursor that is processed to monocistronic mRNAs. In culture, when differentiation to late procyclic forms is triggered by removal of glycerol, the precursor is still transcribed, but accumulation of GPEET mRNA is prevented by a glycerol‐responsive element in the 3′ UTR. A genome‐wide RNAi screen for persistent expression of GPEET in glycerol‐free medium identified a novel protein, NRG1 (Nucleolar Regulator of GPEET 1), as a negative regulator. NRG1 associates with GPEET mRNA and with several nucleolar proteins. These include two PUF proteins, TbPUF7 and TbPUF10, and BOP1, a protein required for rRNA processing in other organisms. RNAi against each of these components prolonged or even increased GPEET expression in the absence of glycerol as well as causing a significant reduction in 5.8S rRNA and its immediate precursor. These results indicate that components of a complex used for rRNA maturation can have an additional role in regulating mRNAs that originate in the nucleolus.

Collaboration


Dive into the Bernd Schimanski's collaboration.

Top Co-Authors

Avatar

Arthur Günzl

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Tu N. Nguyen

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge