Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Beata Kmiec is active.

Publication


Featured researches published by Beata Kmiec.


The Plant Cell | 2013

A Membrane-Bound NAC Transcription Factor, ANAC017, Mediates Mitochondrial Retrograde Signaling in Arabidopsis

Sophia Ng; Aneta Ivanova; Owen Duncan; Simon R. Law; Olivier Van Aken; Inge De Clercq; Y. Wang; Chris Carrie; Lin Xu; Beata Kmiec; Hayden Walker; Frank Van Breusegem; James Whelan; Estelle Giraud

This work identifies a biological role for ANAC017 as an integral cellular component in mitochondrial retrograde signaling and a high-level transcriptional regulator that is necessary for H2O2-mediated primary stress responses in plants. Plants require daily coordinated regulation of energy metabolism for optimal growth and survival and therefore need to integrate cellular responses with both mitochondrial and plastid retrograde signaling. Using a forward genetic screen to characterize regulators of alternative oxidase1a (rao) mutants, we identified RAO2/Arabidopsis NAC domain-containing protein17 (ANAC017) as a direct positive regulator of AOX1a. RAO2/ANAC017 is targeted to connections and junctions in the endoplasmic reticulum (ER) and F-actin via a C-terminal transmembrane (TM) domain. A consensus rhomboid protease cleavage site is present in ANAC017 just prior to the predicted TM domain. Furthermore, addition of the rhomboid protease inhibitor N-p-Tosyl-l-Phe chloromethyl abolishes the induction of AOX1a upon antimycin A treatment. Simultaneous fluorescent tagging of ANAC017 with N-terminal red fluorescent protein (RFP) and C-terminal green fluorescent protein (GFP) revealed that the N-terminal RFP domain migrated into the nucleus, while the C-terminal GFP tag remained in the ER. Genome-wide analysis of the transcriptional network regulated by RAO2/ANAC017 under stress treatment revealed that RAO2/ANAC017 function was necessary for >85% of the changes observed as a primary response to cytosolic hydrogen peroxide (H2O2), but only ∼33% of transcriptional changes observed in response to antimycin A treatment. Plants with mutated rao2/anac017 were more stress sensitive, whereas a gain-of-function mutation resulted in plants that had lower cellular levels of H2O2 under untreated conditions.


Journal of Experimental Botany | 2014

Protein import into plant mitochondria: signals, machinery, processing, and regulation

Monika W. Murcha; Beata Kmiec; Szymon Kubiszewski-Jakubiak; Pedro Filipe Teixeira; Elzbieta Glaser; James Whelan

The majority of more than 1000 proteins present in mitochondria are imported from nuclear-encoded, cytosolically synthesized precursor proteins. This impressive feat of transport and sorting is achieved by the combined action of targeting signals on mitochondrial proteins and the mitochondrial protein import apparatus. The mitochondrial protein import apparatus is composed of a number of multi-subunit protein complexes that recognize, translocate, and assemble mitochondrial proteins into functional complexes. While the core subunits involved in mitochondrial protein import are well conserved across wide phylogenetic gaps, the accessory subunits of these complexes differ in identity and/or function when plants are compared with Saccharomyces cerevisiae (yeast), the model system for mitochondrial protein import. These differences include distinct protein import receptors in plants, different mechanistic operation of the intermembrane protein import system, the location and activity of peptidases, the function of inner-membrane translocases in linking the outer and inner membrane, and the association/regulation of mitochondrial protein import complexes with components of the respiratory chain. Additionally, plant mitochondria share proteins with plastids, i.e. dual-targeted proteins. Also, the developmental and cell-specific nature of mitochondrial biogenesis is an aspect not observed in single-celled systems that is readily apparent in studies in plants. This means that plants provide a valuable model system to study the various regulatory processes associated with protein import and mitochondrial biogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Organellar oligopeptidase (OOP) provides a complementary pathway for targeting peptide degradation in mitochondria and chloroplasts

Beata Kmiec; Pedro Filipe Teixeira; Ronnie P.-A. Berntsson; Monika W. Murcha; Rui M. Branca; Jordan Radomiljac; Jakob Regberg; Linda M. Svensson; Amin Bakali; Ülo Langel; Janne Lehtiö; James Whelan; Pål Stenmark; Elzbieta Glaser

Significance Import of proteins to mitochondria and chloroplasts is essential for organelle biogenesis and organism survival. Proteins to be imported contain an N-terminal peptide targeting the protein to the correct organelle. The targeting peptides are cleaved off after the completed import. Because the free targeting peptides are potentially toxic to organellar activities, they must be removed. Here we report the identification and characterization of a unique mitochondrial and chloroplastic oligopeptidase, organellar oligopeptidase, that provides a complementary pathway for the degradation of targeting peptides and also participates in general organellar quality control mechanisms degrading the peptides produced from complete protein degradation. Both mitochondria and chloroplasts contain distinct proteolytic systems for precursor protein processing catalyzed by the mitochondrial and stromal processing peptidases and for the degradation of targeting peptides catalyzed by presequence protease. Here, we have identified and characterized a component of the organellar proteolytic systems in Arabidopsis thaliana, the organellar oligopeptidase, OOP (At5g65620). OOP belongs to the M3A family of peptide-degrading metalloproteases. Using two independent in vivo methods, we show that the protease is dually localized to mitochondria and chloroplasts. Furthermore, we localized the OPP homolog At5g10540 to the cytosol. Analysis of peptide degradation by OOP revealed substrate size restriction from 8 to 23 aa residues. Short mitochondrial targeting peptides (presequence of the ribosomal protein L29 and presequence of 1-aminocyclopropane-1-carboxylic acid deaminase 1) and N- and C-terminal fragments derived from the presequence of the ATPase beta subunit ranging in size from 11 to 20 aa could be degraded. MS analysis showed that OOP does not exhibit a strict cleavage pattern but shows a weak preference for hydrophobic residues (F/L) at the P1 position. The crystal structures of OOP, at 1.8–1.9 Å, exhibit an ellipsoidal shape consisting of two major domains enclosing the catalytic cavity of 3,000 Å3. The structural and biochemical data suggest that the protein undergoes conformational changes to allow peptide binding and proteolysis. Our results demonstrate the complementary role of OOP in targeting-peptide degradation in mitochondria and chloroplasts.


Physiologia Plantarum | 2012

A novel mitochondrial and chloroplast peptidasome, PreP

Beata Kmiec; Elzbieta Glaser

A novel mitochondrial and chloroplast peptidasome, the Presequence Protease (PreP) degrades organellar targeting peptides as well as other unstructured peptides up to 65 amino acid residues in length. PreP belongs to the pitrilysin oligopeptidase family (M16C) containing an inverted zinc-binding motif. The crystal structure of Arabidopsis thaliana PreP, AtPreP, refined at 2.1 Å, revealed a novel mechanism of proteolysis in which two halves of the enzyme connected by a hinge region enclose a large catalytic chamber opening and closing in response to peptide binding. Double knock-out mutant of AtPreP1 and AtPreP2 results in a severe phenotype, including decreased size and growth rate, chlorosis and organellar abnormalities, such as altered chloroplast starch content, partial loss of the integrity of the inner mitochondrial membrane and reduced mitochondrial respiration. PreP homologues are also present in yeast and humans. Interestingly, human PreP has been associated with Alzheimers disease as it is responsible for degradation of amyloid-β peptide in brain mitochondria.


Trends in Plant Science | 2014

Shredding the signal : targeting peptide degradation in mitochondria and chloroplasts

Beata Kmiec; Pedro Filipe Teixeira; Elzbieta Glaser

The biogenesis and functionality of mitochondria and chloroplasts depend on the constant turnover of their proteins. The majority of mitochondrial and chloroplastic proteins are imported as precursors via their N-terminal targeting peptides. After import, the targeting peptides are cleaved off and degraded. Recent work has elucidated a pathway involved in the degradation of targeting peptides in mitochondria and chloroplasts, with two proteolytic components: the presequence protease (PreP) and the organellar oligopeptidase (OOP). PreP and OOP are specialized in degrading peptides of different lengths, with the substrate restriction being dictated by the structure of their proteolytic cavities. The importance of the intraorganellar peptide degradation is highlighted by the fact that elimination of both oligopeptidases affects growth and development of Arabidopsis thaliana.


Biochimie | 2014

Phenotypical consequences of expressing the dually targeted Presequence Protease, AtPreP, exclusively in mitochondria.

Beata Kmiec; Pedro Filipe Teixeira; Elzbieta Glaser

Endosymbiotic organelles, mitochondria and chloroplasts, are sites of an intensive protein synthesis and degradation. A consequence of these processes is production of both free targeting peptides, i.e. mitochondrial presequences and chloroplastic transit peptides, and other short unstructured peptides. Mitochondrial, as well as chloroplastic peptides are degraded by Presequence Protease (PreP), which is dually targeted to mitochondrial matrix and chloroplastic stroma. Elimination of PreP in Arabidopsis thaliana leads to growth retardation, chlorosis and impairment of mitochondrial functions potentially due to the accumulation of targeting peptides. In this work we analyzed the influence of the restoration of mitochondrial peptide degradation by AtPreP on plant phenotype. We showed that exclusive mitochondrial expression of AtPreP results in total restoration of the proteolytic activity, but it does not restore the wild-type phenotype. The plants grow shorter roots and smaller rosettes compared to the plants expressing AtPreP1 in both mitochondria and chloroplasts. With this analysis we are aiming at understanding the physiological impact of the role of the dually targeted AtPreP in single type of destination organelle.


Plant Physiology | 2016

Plant-Specific Preprotein and Amino Acid Transporter Proteins Are Required for tRNA Import into Mitochondria

Monika W. Murcha; Szymon Kubiszewski-Jakubiak; Pedro Filipe Teixeira; Irene L. Gügel; Beata Kmiec; Reena Narsai; Aneta Ivanova; Cyrille Megel; Annette Schock; Sabrina Kraus; Oliver Berkowitz; Elzbieta Glaser; Katrin Philippar; Laurence Maréchal-Drouard; Jürgen Soll; James Whelan

tRNA import into plant mitochondria requires the outer mitochondrial membrane PRAT domain-containing proteins Tric1 and Tric2 that are orthologous to the protein import translocases of the inner membrane. A variety of eukaryotes, in particular plants, do not contain the required number of tRNAs to support the translation of mitochondria-encoded genes and thus need to import tRNAs from the cytosol. This study identified two Arabidopsis (Arabidopsis thaliana) proteins, Tric1 and Tric2 (for tRNA import component), which on simultaneous inactivation by T-DNA insertion lines displayed a severely delayed and chlorotic growth phenotype and significantly reduced tRNA import capacity into isolated mitochondria. The predicted tRNA-binding domain of Tric1 and Tric2, a sterile-α-motif at the C-terminal end of the protein, was required to restore tRNA uptake ability in mitochondria of complemented plants. The purified predicted tRNA-binding domain binds the T-arm of the tRNA for alanine with conserved lysine residues required for binding. T-DNA inactivation of both Tric proteins further resulted in an increase in the in vitro rate of in organello protein synthesis, which was mediated by a reorganization of the nuclear transcriptome, in particular of genes encoding a variety of proteins required for mitochondrial gene expression at both the transcriptional and translational levels. The characterization of Tric1/2 provides mechanistic insight into the process of tRNA import into mitochondria and supports the theory that the tRNA import pathway resulted from the repurposing of a preexisting protein import apparatus.


Nature Chemical Biology | 2017

A multi-step peptidolytic cascade for amino acid recovery in chloroplasts

Pedro Filipe Teixeira; Beata Kmiec; Rui M. Branca; Monika W. Murcha; Anna Byzia; Aneta Ivanova; James Whelan; Marcin Drag; Janne Lehtiö; Elzbieta Glaser

Plastids (including chloroplasts) are subcellular sites for a plethora of proteolytic reactions, required in functions ranging from protein biogenesis to quality control. Here we show that peptides generated from pre-protein maturation within chloroplasts of Arabidopsis thaliana are degraded to amino acids by a multi-step peptidolytic cascade consisting of oligopeptidases and aminopeptidases, effectively allowing the recovery of single amino acids within these organelles.


Methods of Molecular Biology | 2015

A Flowchart to Analyze Protease Activity in Plant Mitochondria

Pedro Filipe Teixeira; Rui M. Branca; Beata Kmiec; Elzbieta Glaser

Proteases are one of the most abundant classes of enzymes and are involved in a plethora of biological processes in many cellular compartments, including the mitochondria. To understand the role of proteases is essential to determine their substrate repertoire, preferably in an in vivo setting. In this chapter we describe general guidelines to analyze protease activity using several strategies, from in-gel analysis to mass spectrometry mapping of the cleavage site(s) and fluorogenic probes that can easily be used in vivo. To exemplify this flowchart, we used the recently characterized organellar oligopeptidase of Arabidopsis (Arabidopsis thaliana), an enzyme that takes part in degradation of short peptides within mitochondria and chloroplasts.


Physiologia Plantarum | 2016

Divergent evolution of the M3A family of metallopeptidases in plants

Beata Kmiec; Pedro Filipe Teixeira; Monika W. Murcha; Elzbieta Glaser

Plants, as stationary organisms, have developed mechanisms allowing them efficient resource reallocation and a response to changing environmental conditions. One of these mechanisms is proteome remodeling via a broad peptidase network present in various cellular compartments including mitochondria and chloroplasts. The genome of the model plant Arabidopsis thaliana encodes as many as 616 putative peptidase-coding genes organized in 55 peptidase families. In this study, we describe the M3A family of peptidases, which comprises four members: mitochondrial and chloroplastic oligopeptidase (OOP), cytosolic oligopeptidase (CyOP), mitochondrial octapeptidyl aminopeptidase 1 (Oct1) and plant-specific protein of M3 family (PSPM3) of unknown function. We have analyzed the evolutionary conservation of M3A peptidases across plant species and the functional specialization of the three distinct subfamilies. We found that the subfamily-containing OOP and CyOP-like peptidases, responsible for oligopeptide degradation in the endosymbiotic organelles (OOP) or in the cytosol (CyOP), are highly conserved in all kingdoms of life. The Oct1-like peptidase subfamily involved in pre-protein maturation in mitochondria is conserved in all eukaryotes, whereas the PSPM3-like protein subfamily is strictly conserved in higher plants only and is of unknown function. Specific characteristics within PSPM3 sequences, i.e. occurrence of a N-terminal transmembrane domain and amino acid changes in distal substrate-binding motif, distinguish PSPM3 proteins from other members of M3A family. We performed peptidase activity measurements to analyze the role of substrate-binding residues in the different Arabidopsis M3A paralogs.

Collaboration


Dive into the Beata Kmiec's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monika W. Murcha

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aneta Ivanova

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Owen Duncan

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Y. Wang

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge