Beate M. Lichtenberger
Medical University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Beate M. Lichtenberger.
Nature | 2013
Ryan R. Driskell; Beate M. Lichtenberger; Esther Hoste; Kai Kretzschmar; B. D. Simons; Marika Charalambous; Sacri R. Ferrón; Yann Herault; Guillaume Pavlovic; Anne C. Ferguson-Smith; Fiona M. Watt
Fibroblasts are the major mesenchymal cell type in connective tissue and deposit the collagen and elastic fibres of the extracellular matrix (ECM). Even within a single tissue, fibroblasts exhibit considerable functional diversity, but it is not known whether this reflects the existence of a differentiation hierarchy or is a response to different environmental factors. Here we show, using transplantation assays and lineage tracing in mice, that the fibroblasts of skin connective tissue arise from two distinct lineages. One forms the upper dermis, including the dermal papilla that regulates hair growth and the arrector pili muscle, which controls piloerection. The other forms the lower dermis, including the reticular fibroblasts that synthesize the bulk of the fibrillar ECM, and the preadipocytes and adipocytes of the hypodermis. The upper lineage is required for hair follicle formation. In wounded adult skin, the initial wave of dermal repair is mediated by the lower lineage and upper dermal fibroblasts are recruited only during re-epithelialization. Epidermal β-catenin activation stimulates the expansion of the upper dermal lineage, rendering wounds permissive for hair follicle formation. Our findings explain why wounding is linked to formation of ECM-rich scar tissue that lacks hair follicles. They also form a platform for discovering fibroblast lineages in other tissues and for examining fibroblast changes in ageing and disease.
Cell | 2010
Beate M. Lichtenberger; Poi Kiang Tan; Heide Niederleithner; Napoleone Ferrara; Peter Petzelbauer; Maria Sibilia
It is established that tumor cell-derived VEGF acts on endothelial cells to promote angiogenesis and tumor growth. Here, we demonstrate that in K5-SOS-dependent mouse skin tumors, autocrine VEGF is required for tumor cell proliferation in a cell-autonomous and angiogenesis-independent manner. VEGF is upregulated in SOS-expressing tumors, and its deletion in epidermal cells delays tumorigenesis by suppressing angiogenesis and tumor cell proliferation. Epidermis-specific Flt1 deletion also impairs tumorigenesis and proliferation. Surprisingly, complete tumor inhibition occurs in the absence of VEGF in EGFR mutant mice, demonstrating that VEGFR and EGFR synergize in neoplastic cells to promote tumor growth. Mechanistically, K5-SOS upregulates VEGF, Flt1, and Neuropilin-1 in an Erk-dependent manner, thereby activating an autocrine proliferation loop, whereas EGFR prevents tumor cells from apoptosis. Moreover, Flt1 is upregulated in human SCC, and its inhibition in SCC cells impairs proliferation. Thus, in addition to regulating angiogenesis, VEGF has to be considered as a potent growth factor for epidermal tumors.
Science Translational Medicine | 2013
Beate M. Lichtenberger; Peter Arne Gerber; Martin Holcmann; Bettina Alexandra Buhren; Nicole Amberg; Viktoria Smolle; Holger Schrumpf; E. Boelke; Parinaz Ansari; Colin R. MacKenzie; Andreas Wollenberg; Andreas Kislat; Jens W. Fischer; Katharina Röck; Jürgen Harder; Jens M. Schröder; Bernhard Homey; Maria Sibilia
Epidermal EGFR regulates skin inflammation and contributes to skin barrier function and host defense. Skin-Deep Search for the Effects of EGFR Inhibitors The goal of all medical interventions is to treat disease while minimizing the damage to healthy tissues in the body. This can be difficult to achieve for cancer drugs, however, especially when the effectiveness of a drug directly correlates with its side effects, as is the case for inhibitors of the epidermal growth factor receptor (EGFR). EGFR inhibitors are particularly known for causing a severe rash and skin damage, which sometimes forces patients to prematurely stop their treatments. Now, two papers by Mascia et al. and Lichtenberger et al. help clarify the mechanism of rash formation induced by EGFR inhibitors and uncover some of the skin components that contribute to this phenomenon. Both sets of authors used mouse models that lack EGFR only in the skin to replicate the pattern of injury seen in patients treated with EGFR inhibitors. They characterized the changes in chemokine expression in the skin of treated patients and study animals and examined the effects of EGFR inhibition on skin defenses and bacteria. They also investigated the effects of crossing mice that lack EGFR in the skin with mice deficient in different immune pathways and immune cell types to determine which ones are necessary for the rash phenotype. The findings of these two studies suggest that EGFR signaling is important for normal skin barrier function and antimicrobial defense, and that skin macrophages may contribute to the adverse effects of EGFR inhibitors. Additional work will be necessary to further expand our understanding of EGFR inhibitor toxicity and to continue the search for ways to prevent this disruptive side effect. The current studies provide mechanistic insights that should help guide further investigation in this area. The epidermal growth factor receptor (EGFR) plays an important role in tissue homeostasis and tumor progression. However, cancer patients treated with EGFR inhibitors (EGFRIs) frequently develop acneiform skin toxicities, which are a strong predictor of a patient’s treatment response. We show that the early inflammatory infiltrate of the skin rash induced by EGFRI is dominated by dendritic cells, macrophages, granulocytes, mast cells, and T cells. EGFRIs induce the expression of chemokines (CCL2, CCL5, CCL27, and CXCL14) in epidermal keratinocytes and impair the production of antimicrobial peptides and skin barrier proteins. Correspondingly, EGFRI-treated keratinocytes facilitate lymphocyte recruitment but show a considerably reduced cytotoxic activity against Staphylococcus aureus. Mice lacking epidermal EGFR (EGFRΔep) show a similar phenotype, which is accompanied by chemokine-driven skin inflammation, hair follicle degeneration, decreased host defense, and deficient skin barrier function, as well as early lethality. Skin toxicities were not ameliorated in a Rag2-, MyD88-, and CCL2-deficient background or in mice lacking epidermal Langerhans cells. The skin phenotype was also not rescued in a hairless (hr/hr) background, demonstrating that skin inflammation is not induced by hair follicle degeneration. Treatment with mast cell inhibitors reduced the immigration of T cells, suggesting that mast cells play a role in the EGFRI-mediated skin pathology. Our findings demonstrate that EGFR signaling in keratinocytes regulates key factors involved in skin inflammation, barrier function, and innate host defense, providing insights into the mechanisms underlying EGFRI-induced skin pathologies.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Giacomo Donati; Valentina Proserpio; Beate M. Lichtenberger; Ken Natsuga; Rodney Sinclair; Hironobu Fujiwara; Fiona M. Watt
Significance The synchronized patterns of hair follicle growth and expansion of the dermal adipocyte layer have long been recognized. Although factors secreted by adipocytes are known to regulate the hair growth cycle, it is unclear whether, conversely, the epidermis can regulate adipogenesis. Our study now demonstrates that activation of epidermal Wnt/β-catenin signaling stimulates adipocyte differentiation in vivo and in vitro. The effect can be mediated by secreted factors, including insulin-like growth factor 2 and bone morphogenetic proteins 2 and 6. It has long been recognized that the hair follicle growth cycle and oscillation in the thickness of the underlying adipocyte layer are synchronized. Although factors secreted by adipocytes are known to regulate the hair growth cycle, it is unclear whether the epidermis can regulate adipogenesis. We show that inhibition of epidermal Wnt/β-catenin signaling reduced adipocyte differentiation in developing and adult mouse dermis. Conversely, ectopic activation of epidermal Wnt signaling promoted adipocyte differentiation and hair growth. When the Wnt pathway was activated in the embryonic epidermis, there was a dramatic and premature increase in adipocytes in the absence of hair follicle formation, demonstrating that Wnt activation, rather than mature hair follicles, is required for adipocyte generation. Epidermal and dermal gene expression profiling identified keratinocyte-derived adipogenic factors that are induced by β-catenin activation. Wnt/β-catenin signaling-dependent secreted factors from keratinocytes promoted adipocyte differentiation in vitro, and we identified ligands for the bone morphogenetic protein and insulin pathways as proadipogenic factors. Our results indicate epidermal Wnt/β-catenin as a critical initiator of a signaling cascade that induces adipogenesis and highlight the role of epidermal Wnt signaling in synchronizing adipocyte differentiation with the hair growth cycle.
The EMBO Journal | 2013
Mircea Winter; Mirjam A. Moser; Dominique Meunier; Carina Fischer; Georg Machat; Katharina Mattes; Beate M. Lichtenberger; Reinhard Brunmeir; Simon Weissmann; Christina Murko; Christina Humer; Tina Meischel; Gerald Brosch; Patrick Matthias; Maria Sibilia; Christian Seiser
The histone deacetylases HDAC1 and HDAC2 remove acetyl moieties from lysine residues of histones and other proteins and are important regulators of gene expression. By deleting different combinations of Hdac1 and Hdac2 alleles in the epidermis, we reveal a dosage‐dependent effect of HDAC1/HDAC2 activity on epidermal proliferation and differentiation. Conditional ablation of either HDAC1 or HDAC2 in the epidermis leads to no obvious phenotype due to compensation by the upregulated paralogue. Strikingly, deletion of a single Hdac2 allele in HDAC1 knockout mice results in severe epidermal defects, including alopecia, hyperkeratosis, hyperproliferation and spontaneous tumour formation. These mice display impaired Sin3A co‐repressor complex function, increased levels of c‐Myc protein, p53 expression and apoptosis in hair follicles (HFs) and misregulation of HF bulge stem cells. Surprisingly, ablation of HDAC1 but not HDAC2 in a skin tumour model leads to accelerated tumour development. Our data reveal a crucial function of HDAC1/HDAC2 in the control of lineage specificity and a novel role of HDAC1 as a tumour suppressor in the epidermis.
Nature Communications | 2016
Beate M. Lichtenberger; M. Mastrogiannaki; Fiona M. Watt
Sustained epidermal Wnt/β-catenin signalling expands the stem cell compartment and induces ectopic hair follicles (EFs). This is accompanied by extensive fibroblast proliferation and extracellular matrix (ECM) remodelling in the underlying dermis. Here we show that epidermal Hedgehog (Hh) and Transforming growth factor-beta (TGF-β) signalling mediate the dermal changes. Pharmacological inhibition or genetic deletion of these pathways prevents β-catenin-induced dermal reprogramming and EF formation. Epidermal Shh stimulates proliferation of the papillary fibroblast lineage, whereas TGF-β2 controls proliferation, differentiation and ECM production by reticular fibroblasts. Hh inhibitors do not affect TGF-β target gene expression in reticular fibroblasts, and TGF-β inhibition does not prevent Hh target gene induction in papillary fibroblasts. However, when Hh signalling is inhibited the reticular dermis does not respond to epidermal β-catenin activation. We conclude that the dermal response to epidermal Wnt/β-catenin signalling depends on distinct fibroblast lineages responding to different paracrine signals.
Journal of Investigative Dermatology | 2016
M. Mastrogiannaki; Beate M. Lichtenberger; Andreas Reimer; Charlotte A. Collins; Ryan R. Driskell; Fiona M. Watt
The Wnt/β-catenin pathway plays a central role in epidermal homeostasis and regeneration, but how it affects fibroblast fate decisions is unknown. We investigated the effect of targeted β-catenin stabilization in dermal fibroblasts. Comparative gene expression profiling of stem cell antigen 1- (Sca1-) and Sca1+ neonatal fibroblasts from upper and lower dermis, respectively, confirmed that Sca1+ cells had a preadipocyte signature and showed differential expression of Wnt/β-catenin–associated genes. By targeting all fibroblasts or selectively targeting Dlk1+ lower dermal fibroblasts, we found that β-catenin stabilization between developmental stages E16.5 and P2 resulted in a reduction in the dermal adipocyte layer with a corresponding increase in dermal fibrosis and an altered hair cycle. The fibrotic phenotype correlated with a reduction in the potential of Sca1+ fibroblasts to undergo adipogenic differentiation ex vivo. Our findings indicate that Wnt/β-catenin signaling controls adipogenic cell fate within the lower dermis, which potentially contributes to the pathogenesis of fibrotic skin diseases.
Journal of Investigative Dermatology | 2015
Grace Kaushal; Emanuel Rognoni; Beate M. Lichtenberger; Ryan R. Driskell; Kai Kretzschmar; Esther Hoste; Fiona M. Watt
Prominin-1/CD133 (Prom1) is expressed by fibroblasts in the dermal papilla (DP) of the hair follicle (HF). By examining endogenous Prom1 expression and expression of LacZ in the skin of Prom1CreERLacZ (Prom1C-L) mice, in which a CreERT2-IRES-nuclear LacZ cassette is knocked into the first ATG codon of Prom1, we confirmed that Prom1 is expressed in the DP of all developing HFs and also by postnatal anagen follicles. To analyze the fate of Prom1+ DP cells, we crossed Prom1C-L mice with Rosa26-CAG flox/stop/flox tdTomato reporter mice and applied 4-hydroxytamoxifen (4OHT) to back skin at postnatal day (P) 1 and P2. We detected tdTomato+ cells in ~50% of DPs. The proportion of labeled cells per DP increased between P5 and P63, while the total number of cells per DP declined. Following full thickness wounding, there was no migration of tdTomato-labeled cells out of the DP. When β-catenin was activated in Prom1+ DP cells there was an increase in the size of anagen and telogen DP, but the proportion of tdTomato-labeled cells did not increase. We conclude that Prom1+ DP cells do not contribute to dermal repair but are nevertheless capable of regulating DP size via β-catenin-mediated intercellular communication.
Journal of Investigative Dermatology | 2017
Stephanie B. Telerman; Emanuel Rognoni; Inês Sequeira; Angela Oliveira Pisco; Beate M. Lichtenberger; Oliver J. Culley; Priyalakshmi Viswanathan; Ryan R. Driskell; Fiona M. Watt
B-lymphocyte-induced maturation protein 1 (Blimp1) is a transcriptional repressor that regulates cell growth and differentiation in multiple tissues, including skin. Although in the epidermis Blimp1 is important for keratinocyte and sebocyte differentiation, its role in dermal fibroblasts is unclear. Here we show that Blimp1 is dynamically regulated in dermal papilla cells during hair follicle (HF) morphogenesis and the postnatal hair cycle, preceding dermal Wnt/β-catenin activation. Blimp1 ablation in E12.5 mouse dermal fibroblasts delayed HF morphogenesis and growth and prevented new HF formation after wounding. By combining targeted quantitative PCR screens with bioinformatic analysis and experimental validation we demonstrated that Blimp1 is both a target and a mediator of key dermal papilla inductive signaling pathways including transforming growth factor-β and Wnt/β-catenin. Epidermal overexpression of stabilized β-catenin was able to override the HF defects in Blimp1 mutant mice, underlining the close reciprocal relationship between the dermal papilla and adjacent HF epithelial cells. Overall, our study reveals the functional role of Blimp1 in promoting the dermal papilla inductive signaling cascade that initiates HF growth.
Nature Communications | 2017
Gernot Walko; Samuel Woodhouse; Angela Oliveira Pisco; Emanuel Rognoni; Kifayathullah Liakath-Ali; Beate M. Lichtenberger; Ajay Mishra; Stephanie B. Telerman; Priya Viswanathan; Meike Logtenberg; Lisa M Renz; Giacomo Donati; Sven R. Quist; Fiona M. Watt
Individual human epidermal cells differ in their self-renewal ability. To uncover the molecular basis for this heterogeneity, we performed genome-wide pooled RNA interference screens and identified genes conferring a clonal growth advantage on normal and neoplastic (cutaneous squamous cell carcinoma, cSCC) human epidermal cells. The Hippo effector YAP was amongst the top positive growth regulators in both screens. By integrating the Hippo network interactome with our data sets, we identify WW-binding protein 2 (WBP2) as an important co-factor of YAP that enhances YAP/TEAD-mediated gene transcription. YAP and WPB2 are upregulated in actively proliferating cells of mouse and human epidermis and cSCC, and downregulated during terminal differentiation. WBP2 deletion in mouse skin results in reduced proliferation in neonatal and wounded adult epidermis. In reconstituted epidermis YAP/WBP2 activity is controlled by intercellular adhesion rather than canonical Hippo signalling. We propose that defective intercellular adhesion contributes to uncontrolled cSCC growth by preventing inhibition of YAP/WBP2.