Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Beatrice Cardinali is active.

Publication


Featured researches published by Beatrice Cardinali.


PLOS ONE | 2009

Microrna-221 and Microrna-222 Modulate Differentiation and Maturation of Skeletal Muscle Cells

Beatrice Cardinali; Loriana Castellani; Pasquale Fasanaro; Annalisa Basso; Stefano Alemà; Fabio Martelli; Germana Falcone

Background MicroRNAs (miRNAs) are a class of small non-coding RNAs that have recently emerged as important regulators of gene expression. They negatively regulate gene expression post-transcriptionally by translational repression and target mRNA degradation. miRNAs have been shown to play crucial roles in muscle development and in regulation of muscle cell proliferation and differentiation. Methodology/Principal Findings By comparing miRNA expression profiling of proliferating myoblasts versus differentiated myotubes, a number of modulated miRNAs, not previously implicated in regulation of myogenic differentiation, were identified. Among these, miR-221 and miR-222 were strongly down-regulated upon differentiation of both primary and established myogenic cells. Conversely, miR-221 and miR-222 expression was restored in post-mitotic, terminally differentiated myotubes subjected to Src tyrosine kinase activation. By the use of specific inhibitors we provide evidence that expression of miR-221 and miR-222 is under the control of the Ras-MAPK pathway. Both in myoblasts and in myotubes, levels of the cell cycle inhibitor p27 inversely correlated with miR-221 and miR-222 expression, and indeed we show that p27 mRNA is a direct target of these miRNAs in myogenic cells. Ectopic expression of miR-221 and miR-222 in myoblasts undergoing differentiation induced a delay in withdrawal from the cell cycle and in myogenin expression, followed by inhibition of sarcomeric protein accumulation. When miR-221 and miR-222 were expressed in myotubes undergoing maturation, a profound alteration of myofibrillar organization was observed. Conclusions/Significance miR-221 and miR-222 have been found to be modulated during myogenesis and to play a role both in the progression from myoblasts to myocytes and in the achievement of the fully differentiated phenotype. Identification of miRNAs modulating muscle gene expression is crucial for the understanding of the circuits controlling skeletal muscle differentiation and maintenance.


British Journal of Cancer | 2000

Expression of the HMGI(Y) gene products in human neuroblastic tumours correlates with differentiation status

Giuseppe Giannini; C J Kim; L Di Marcotullio; G Manfioletti; Beatrice Cardinali; Fabio Cerignoli; Elisabetta Ristori; Massimo Zani; Luigi Frati; Isabella Screpanti; Alberto Gulino

HMGI and HMGY are splicing variants of the HMGI(Y) gene and together with HMGI-C, belong to a family of DNA binding proteins involved in maintaining active chromatin conformation and in the regulation of gene transcription. The expression of the HMGI(Y) gene is maximal during embryonic development, declines in adult differentiated tissues and is reactivated in most transformed cells in vitro and in many human cancers in vivo. The HMGI(Y) genomic locus is frequently rearranged in mesenchymal tumours, suggesting a biological role for HMGI(Y) gene products in tumour biology. HMGIs are both target and modulators of retinoic acid activity. In fact, HMGI(Y) gene expression is differentially regulated by retinoic acid in retinoid-sensitive and -resistant neuroblastoma cells, while HMGI-C participates in conferring retinoic acid resistance in some neuroblastoma cells. In this paper we show that HMGI and HMGY isoforms are equally regulated by retinoic acid in neuroblastoma cell lines at both RNA and protein levels. More importantly our immunohistochemical analysis shows that, although HMGI(Y) is expressed in all neuroblastic tumours, consistently higher levels are observed in less differentiated neuroblastomas compared to more differentiated ganglioneuromas, indicating that HMGI(Y) expression should be evaluated as a potential diagnostic and prognostic marker in neuroblastic tumours.


PLOS ONE | 2012

Galectin-3 Impairment of MYCN-Dependent Apoptosis-Sensitive Phenotype Is Antagonized by Nutlin-3 in Neuroblastoma Cells

Veronica Veschi; Marialaura Petroni; Beatrice Cardinali; Carlo Dominici; Isabella Screpanti; Luigi Frati; Armando Bartolazzi; Alberto Gulino; Giuseppe Giannini

MYCN amplification occurs in about 20–25% of human neuroblastomas and characterizes the majority of the high-risk cases, which display less than 50% prolonged survival rate despite intense multimodal treatment. Somehow paradoxically, MYCN also sensitizes neuroblastoma cells to apoptosis, understanding the molecular mechanisms of which might be relevant for the therapy of MYCN amplified neuroblastoma. We recently reported that the apoptosis-sensitive phenotype induced by MYCN is linked to stabilization of p53 and its proapoptotic kinase HIPK2. In MYCN primed neuroblastoma cells, further activation of both HIPK2 and p53 by Nutlin-3 leads to massive apoptosis in vitro and to tumor shrinkage and impairment of metastasis in xenograft models. Here we report that Galectin-3 impairs MYCN-primed and HIPK2-p53-dependent apoptosis in neuroblastoma cells. Galectin-3 is broadly expressed in human neuroblastoma cell lines and tumors and is repressed by MYCN to induce the apoptosis-sensitive phenotype. Despite its reduced levels, Galectin-3 can still exert residual antiapoptotic effects in MYCN amplified neuroblastoma cells, possibly due to its specific subcellular localization. Importantly, Nutlin-3 represses Galectin-3 expression, and this is required for its potent cell killing effect on MYCN amplified cell lines. Our data further characterize the apoptosis-sensitive phenotype induced by MYCN, expand our understanding of the activity of MDM2-p53 antagonists and highlight Galectin-3 as a potential biomarker for the tailored p53 reactivation therapy in patients with high-risk neuroblastomas.


Developmental Cell | 2015

Non-canonical Hedgehog/AMPK-Mediated Control of Polyamine Metabolism Supports Neuronal and Medulloblastoma Cell Growth

Davide D’Amico; Laura Antonucci; Laura Di Magno; Sonia Coni; Giulia Sdruscia; Alberto Macone; Evelina Miele; Paola Infante; Lucia Di Marcotullio; Enrico De Smaele; Elisabetta Ferretti; Laura Ciapponi; Felice Giangaspero; John R. Yates; Enzo Agostinelli; Beatrice Cardinali; Isabella Screpanti; Alberto Gulino; Gianluca Canettieri

Developmental Hedgehog signaling controls proliferation of cerebellar granule cell precursors (GCPs), and its aberrant activation is a leading cause of medulloblastoma. We show here that Hedgehog promotes polyamine biosynthesis in GCPs by engaging a non-canonical axis leading to the translation of ornithine decarboxylase (ODC). This process is governed by AMPK, which phosphorylates threonine 173 of the zinc finger protein CNBP in response to Hedgehog activation. Phosphorylated CNBP increases its association with Sufu, followed by CNBP stabilization, ODC translation, and polyamine biosynthesis. Notably, CNBP, ODC, and polyamines are elevated in Hedgehog-dependent medulloblastoma, and genetic or pharmacological inhibition of this axis efficiently blocks Hedgehog-dependent proliferation of medulloblastoma cells in vitro and in vivo. Together, these data illustrate an auxiliary mechanism of metabolic control by a morphogenic pathway with relevant implications in development and cancer.


Molecular therapy. Nucleic acids | 2017

CRISPR/Cas9-Mediated Deletion of CTG Expansions Recovers Normal Phenotype in Myogenic Cells Derived from Myotonic Dystrophy 1 Patients

Claudia Provenzano; Marisa Cappella; Rea Valaperta; Rosanna Cardani; Giovanni Meola; Fabio Martelli; Beatrice Cardinali; Germana Falcone

Myotonic dystrophy type 1 (DM1) is the most common adult-onset muscular dystrophy, characterized by progressive myopathy, myotonia, and multi-organ involvement. This dystrophy is an inherited autosomal dominant disease caused by a (CTG)n expansion within the 3′ untranslated region of the DMPK gene. Expression of the mutated gene results in production of toxic transcripts that aggregate as nuclear foci and sequester RNA-binding proteins, resulting in mis-splicing of several transcripts, defective translation, and microRNA dysregulation. No effective therapy is yet available for treatment of the disease. In this study, myogenic cell models were generated from myotonic dystrophy patient-derived fibroblasts. These cells exhibit typical disease-associated ribonuclear aggregates, containing CUG repeats and muscleblind-like 1 protein, and alternative splicing alterations. We exploited these cell models to develop new gene therapy strategies aimed at eliminating the toxic mutant repeats. Using the CRISPR/Cas9 gene-editing system, the repeat expansions were removed, therefore preventing nuclear foci formation and splicing alterations. Compared with the previously reported strategies of inhibition/degradation of CUG expanded transcripts by various techniques, the advantage of this approach is that affected cells can be permanently reverted to a normal phenotype.


Cell Death and Disease | 2016

MicroRNA-222 regulates muscle alternative splicing through Rbm24 during differentiation of skeletal muscle cells.

Beatrice Cardinali; M. Cappella; Claudia Provenzano; Jose Manuel Garcia-Manteiga; Dejan Lazarevic; Davide Cittaro; Fabio Martelli; Germana Falcone

A number of microRNAs have been shown to regulate skeletal muscle development and differentiation. MicroRNA-222 is downregulated during myogenic differentiation and its overexpression leads to alteration of muscle differentiation process and specialized structures. By using RNA-induced silencing complex (RISC) pulldown followed by RNA sequencing, combined with in silico microRNA target prediction, we have identified two new targets of microRNA-222 involved in the regulation of myogenic differentiation, Ahnak and Rbm24. Specifically, the RNA-binding protein Rbm24 is a major regulator of muscle-specific alternative splicing and its downregulation by microRNA-222 results in defective exon inclusion impairing the production of muscle-specific isoforms of Coro6, Fxr1 and NACA transcripts. Reconstitution of normal levels of Rbm24 in cells overexpressing microRNA-222 rescues muscle-specific splicing. In conclusion, we have identified a new function of microRNA-222 leading to alteration of myogenic differentiation at the level of alternative splicing, and we provide evidence that this effect is mediated by Rbm24 protein.


PLOS ONE | 2015

MET Gene Amplification and MET Receptor Activation Are Not Sufficient to Predict Efficacy of Combined MET and EGFR Inhibitors in EGFR TKI-Resistant NSCLC Cells

Dario Presutti; Simonetta Santini; Beatrice Cardinali; Giuliana Papoff; Cristiana Lalli; Simone Samperna; Valentina Fustaino; Giuseppe Giannini; Giovina Ruberti

Epidermal growth factor receptor (EGFR), member of the human epidermal growth factor receptor (HER) family, plays a critical role in regulating multiple cellular processes including proliferation, differentiation, cell migration and cell survival. Deregulation of the EGFR signaling has been found to be associated with the development of a variety of human malignancies including lung, breast, and ovarian cancers, making inhibition of EGFR the most promising molecular targeted therapy developed in the past decade against cancer. Human non small cell lung cancers (NSCLC) with activating mutations in the EGFR gene frequently experience significant tumor regression when treated with EGFR tyrosine kinase inhibitors (TKIs), although acquired resistance invariably develops. Resistance to TKI treatments has been associated to secondary mutations in the EGFR gene or to activation of additional bypass signaling pathways including the ones mediated by receptor tyrosine kinases, Fas receptor and NF-kB. In more than 30–40% of cases, however, the mechanisms underpinning drug-resistance are still unknown. The establishment of cellular and mouse models can facilitate the unveiling of mechanisms leading to drug-resistance and the development or validation of novel therapeutic strategies aimed at overcoming resistance and enhancing outcomes in NSCLC patients. Here we describe the establishment and characterization of EGFR TKI-resistant NSCLC cell lines and a pilot study on the effects of a combined MET and EGFR inhibitors treatment. The characterization of the erlotinib-resistant cell lines confirmed the association of EGFR TKI resistance with loss of EGFR gene amplification and/or AXL overexpression and/or MET gene amplification and MET receptor activation. These cellular models can be instrumental to further investigate the signaling pathways associated to EGFR TKI-resistance. Finally the drugs combination pilot study shows that MET gene amplification and MET receptor activation are not sufficient to predict a positive response of NSCLC cells to a cocktail of MET and EGFR inhibitors and highlights the importance of identifying more reliable biomarkers to predict the efficacy of treatments in NSCLC patients resistant to EGFR TKI.


Cell Cycle | 2014

CNBP regulates wing development in Drosophila melanogaster by promoting IRES-dependent translation of dMyc

Laura Antonucci; Davide D'Amico; Laura Di Magno; Sonia Coni; Lucia Di Marcotullio; Beatrice Cardinali; Alberto Gulino; Laura Ciapponi; Gianluca Canettieri

CCHC-type zinc finger nucleic acid binding protein (CNBP) is a small conserved protein, which plays a key role in development and disease. Studies in animal models have shown that the absence of CNBP results in severe developmental defects that have been mostly attributed to its ability to regulate c-myc mRNA expression. Functionally, CNBP binds single-stranded nucleic acids and acts as a molecular chaperone, thus regulating both transcription and translation. In this work we report that in Drosophila melanogaster, CNBP is an essential gene, whose absence causes early embryonic lethality. In contrast to what observed in other species, ablation of CNBP does not affect dMyc mRNA expression, whereas the protein levels are markedly reduced. We demonstrate for the first time that dCNBP regulates dMyc translation through an IRES-dependent mechanism, and that knockdown of dCNBP in the wing territory causes a general reduction of wing size, in keeping with the reported role of dMyc in this region. Consistently, reintroduction of dMyc in CNBP-deficient wing imaginal discs rescues the wing size, further supporting a key role of the CNBP-Myc axis in this context. Collectively, these data show a previously uncharacterized mechanism, whereby, by regulating dMyc IRES-dependent translation, CNBP controls Drosophila wing development. These results may have relevant implications in other species and in pathophysiological conditions.


BioMed Research International | 2014

Noncoding RNAs: Emerging Players in Muscular Dystrophies

Germana Falcone; Alessandra Perfetti; Beatrice Cardinali; Fabio Martelli

The fascinating world of noncoding RNAs has recently come to light, thanks to the development of powerful sequencing technologies, revealing a variety of RNA molecules playing important regulatory functions in most, if not all, cellular processes. Many noncoding RNAs have been implicated in regulatory networks that are determinant for skeletal muscle differentiation and disease. In this review, we outline the noncoding RNAs involved in physiological mechanisms of myogenesis and those that appear dysregulated in muscle dystrophies, also discussing their potential use as disease biomarkers and therapeutic targets.


Oncotarget | 2017

Characterization of epithelial-mesenchymal transition intermediate/hybrid phenotypes associated to resistance to EGFR inhibitors in non-small cell lung cancer cell lines

Valentina Fustaino; Dario Presutti; Teresa Colombo; Beatrice Cardinali; Giuliana Papoff; Rossella Brandi; Paola Bertolazzi; Giovanni Felici; Giovina Ruberti

Increasing evidence points to a key role played by epithelial-mesenchymal transition (EMT) in cancer progression and drug resistance. In this study, we used wet and in silico approaches to investigate whether EMT phenotypes are associated to resistance to target therapy in a non-small cell lung cancer model system harboring activating mutations of the epidermal growth factor receptor. The combination of different analysis techniques allowed us to describe intermediate/hybrid and complete EMT phenotypes respectively in HCC827- and HCC4006-derived drug-resistant human cancer cell lines. Interestingly, intermediate/hybrid EMT phenotypes, a collective cell migration and increased stem-like ability associate to resistance to the epidermal growth factor receptor inhibitor, erlotinib, in HCC827 derived cell lines. Moreover, the use of three complementary approaches for gene expression analysis supported the identification of a small EMT-related gene list, which may have otherwise been overlooked by standard stand-alone methods for gene expression analysis.

Collaboration


Dive into the Beatrice Cardinali's collaboration.

Top Co-Authors

Avatar

Germana Falcone

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Alberto Gulino

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giuseppe Giannini

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabella Screpanti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dario Presutti

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Giovina Ruberti

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Giuliana Papoff

National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge