Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudia Provenzano is active.

Publication


Featured researches published by Claudia Provenzano.


Oncogene | 1997

Regulation of the tyrosine kinase substrate Eps8 expression by growth factors, v-Src and terminal differentiation.

Rita Gallo; Claudia Provenzano; Roberta Carbone; Pier Paolo Di Fiore; Loriana Castellani; Germana Falcone; Stefano Alemà

SH3-containing proteins are involved in signal transduction by a number of growth factor receptors and in the organization of the cytoskeleton. The recently identified Eps8 protein, which contains an SH3 domain, is coupled functionally and physically to the EGFR and is tyrosine phosphorylated by this receptor and other receptors as well. Here, we examined the regulation of eps8 expression in response to mitogenic or differentiative signals. We show that Eps8 is expressed at low levels in resting fibroblasts, but its expression is strongly induced during activation by serum, phorbol esters and the v-src oncogene. Conversely, expression of Eps8, but not of other EGFR substrates such as Shc or Eps15, is virtually extinguished in non-proliferating, terminally differentiated murine myogenic cells. The putative role of Eps8 protein as a v-Src substrate was analysed in murine fibroblasts and in quail myogenic cells expressing a temperature-sensitive variant of the tyrosine kinase. Tyrosine phosphorylation of Eps8 was detected only at the permissive temperature. A non-myristylated, transformation-defective mutant of v-Src did not phosphorylate Eps8, whereas it phosphorylated Shc. Together, these findings indicate that Eps8 may be a critical substrate of v-Src. They further establish Eps8 as an example of a signal transducer whose expression senses the balance between growth and differentiation and might, therefore, be involved in the determination of the phenotype.


Journal of the Neurological Sciences | 2008

Functional characterization of a novel mutation in TITF-1 in a patient with benign hereditary chorea

Claudia Provenzano; Liana Veneziano; Richard Appleton; Marina Frontali; Donato Civitareale

Benign hereditary chorea (BHC) is an autosomal dominant disorder of early onset characterised by non progressive choreic movements with normal cognitive function occasionally associated with hypothyroidism and respiratory problems. Numerous pieces of evidence link BHC with TITF-1/NKX2.1 gene mutations. We studied a patient with a familial benign hereditary chorea and normal thyroid and respiratory function. Sequence analysis of TITF-1 revealed the presence of a heterozygous C>T substitution at nucleotide 532, predicted to change an arginine (CGA) with a stop codon (TGA) at position 178 (R178X). A functional analysis shows that the mutated TTF-1 is not binding DNA, nor activating the canonical thyroid target gene promoter or interfering with the ability of wild type TTF-1 to activate transcription. In addition, the mutated protein is predominantly cytoplasmic, rather than nuclear as in the case of the wild type TTF-1. Thus, we have identified a new mutation in the TTF-1 coding gene in a patient with benign hereditary chorea. The results show that the mutation leads to a haploinsufficiency of TITF-1 and opens the question of genotype/phenotype correlation.


Oncogene | 2005

Retinoblastoma protein acts as Pax 8 transcriptional coactivator

Stefania Miccadei; Claudia Provenzano; Martin Mojzisek; Pier Giorgio Natali; Donato Civitareale

Control of cell proliferation and differentiation by the retinoblastoma protein (pRb) depends on its interactions with key cellular substrates. Available data indicate that pRb and the transcription factor Pax 8 play a crucial role in the differentiation of thyroid follicular cells. In this study, we show that pRb takes part in the complex assembled on the thyroperoxidase gene promoter acting as a transcriptional coactivator of Pax 8. Accordingly, pRb interacts with and potentiates Pax 8 transcriptional activity. In addition, we show that the downregulation of pRb gene expression, in thyrocytes, through RNA interference results in a reduction of the thyroperoxidase gene promoter activity mediated by the Pax 8-binding site. In agreement with these results and with the ability of the adenoviral protein E1A to bind pRb, we show that E1A downregulates Pax 8 activity and that such inhibition requires the E1A–Rb interaction. Furthermore, we show that the Pax 8/pRb synergy plays a role on the sodium/iodide symporter gene expression as well.


Molecular therapy. Nucleic acids | 2017

CRISPR/Cas9-Mediated Deletion of CTG Expansions Recovers Normal Phenotype in Myogenic Cells Derived from Myotonic Dystrophy 1 Patients

Claudia Provenzano; Marisa Cappella; Rea Valaperta; Rosanna Cardani; Giovanni Meola; Fabio Martelli; Beatrice Cardinali; Germana Falcone

Myotonic dystrophy type 1 (DM1) is the most common adult-onset muscular dystrophy, characterized by progressive myopathy, myotonia, and multi-organ involvement. This dystrophy is an inherited autosomal dominant disease caused by a (CTG)n expansion within the 3′ untranslated region of the DMPK gene. Expression of the mutated gene results in production of toxic transcripts that aggregate as nuclear foci and sequester RNA-binding proteins, resulting in mis-splicing of several transcripts, defective translation, and microRNA dysregulation. No effective therapy is yet available for treatment of the disease. In this study, myogenic cell models were generated from myotonic dystrophy patient-derived fibroblasts. These cells exhibit typical disease-associated ribonuclear aggregates, containing CUG repeats and muscleblind-like 1 protein, and alternative splicing alterations. We exploited these cell models to develop new gene therapy strategies aimed at eliminating the toxic mutant repeats. Using the CRISPR/Cas9 gene-editing system, the repeat expansions were removed, therefore preventing nuclear foci formation and splicing alterations. Compared with the previously reported strategies of inhibition/degradation of CUG expanded transcripts by various techniques, the advantage of this approach is that affected cells can be permanently reverted to a normal phenotype.


Cell Death and Disease | 2016

MicroRNA-222 regulates muscle alternative splicing through Rbm24 during differentiation of skeletal muscle cells.

Beatrice Cardinali; M. Cappella; Claudia Provenzano; Jose Manuel Garcia-Manteiga; Dejan Lazarevic; Davide Cittaro; Fabio Martelli; Germana Falcone

A number of microRNAs have been shown to regulate skeletal muscle development and differentiation. MicroRNA-222 is downregulated during myogenic differentiation and its overexpression leads to alteration of muscle differentiation process and specialized structures. By using RNA-induced silencing complex (RISC) pulldown followed by RNA sequencing, combined with in silico microRNA target prediction, we have identified two new targets of microRNA-222 involved in the regulation of myogenic differentiation, Ahnak and Rbm24. Specifically, the RNA-binding protein Rbm24 is a major regulator of muscle-specific alternative splicing and its downregulation by microRNA-222 results in defective exon inclusion impairing the production of muscle-specific isoforms of Coro6, Fxr1 and NACA transcripts. Reconstitution of normal levels of Rbm24 in cells overexpressing microRNA-222 rescues muscle-specific splicing. In conclusion, we have identified a new function of microRNA-222 leading to alteration of myogenic differentiation at the level of alternative splicing, and we provide evidence that this effect is mediated by Rbm24 protein.


Oncogene | 2003

v-Src inhibits myogenic differentiation by interfering with the regulatory network of muscle-specific transcriptional activators at multiple levels.

Germana Falcone; Laura Ciuffini; Maria-Cristina Gauzzi; Claudia Provenzano; Sabrina Strano; Rita Gallo; Loriana Castellani; Stefano Alemà

The conversion of skeletal myoblasts to terminally differentiated myocytes is negatively controlled by several growth factors and oncoproteins. In this study, we have investigated the molecular mechanisms by which v-Src, a prototypic tyrosine kinase, perturbs myogenesis in primary avian myoblasts and in established murine C2C12 satellite cells. We determined the expression levels of the cell cycle regulators pRb, cyclin D1 and D3 and cyclin-dependent kinase inhibitors p21 and p27 in v-Src-transformed myoblasts and found that, in contrast to myogenin, they are normally modulated by differentiative cues, implying that v-Src affects myogenesis independent of cell proliferation. We then examined the levels of expression, DNA-binding ability and transcription-activation potentials of myogenic regulatory factors in transformed myoblasts and in myotubes after reactivation of a temperature-sensitive allele of v-Src. Our results reveal two distinct potential modes of repression targeted to myogenic factors. On the one hand, we show that v-Src reversibly inhibits the expression of MyoD and myogenin in C2C12 cells and of myogenin in quail myoblasts. Remarkably, these loci become resistant to activation of the kinase in the postmitotic compartment. On the other hand, we demonstrate that v-Src efficiently inhibits muscle gene expression by repressing the transcriptional activity of myogenic factors without affecting MyoD DNA-binding activity. Indeed, forced expression of MyoD and myogenin allows terminal differentiation of transformed myoblasts. Finally, we found that ectopic expression of the coactivator p300 restores transcription from extrachromosomal muscle-specific promoters.


Molecular and Cellular Endocrinology | 2010

Large scale analysis of transcription factor TTF-1/NKX2.1 target genes in GnRH secreting cell line GT1-7

Claudia Provenzano; Barbara Pascucci; Eliana Lupari; Donato Civitareale

TTF-1/Nkx2.1 is a homeodomain-containing transcription factor required for the proper development of ventral forebrain, including some structures of the hypothalamus. TTF-1/Nkx2.1 remains expressed in the hypothalamus after birth and it plays a crucial role during sexual development. To identify putative TTF-1/Nkx2.1 target genes in GnRH neurons, we have studied the gene expression profile of the GT1-7 cells exogenously expressing TTF-1/Nkx2.1 coding gene. Our transcriptome analysis confirms that TTF-1/Nkx2.1 is involved in neuron morphogenesis and differentiation. Many of the newly identified TTF-1/Nkx2.1 target genes have a direct involvement with the central regulation of sexual maturity. In particular, we have identified Sparc as a gene directly regulated by TTF-1/Nkx2.1 at the promoter level. To further support the role of TTF-1 in GnRH neurons, we show that Sparc is involved in the regulation of the GnRH secretion in GT1-7 cells.


Cell Death and Disease | 2018

High-throughput analysis of the RNA-induced silencing complex in myotonic dystrophy type 1 patients identifies the dysregulation of miR-29c and its target ASB2

Marisa Cappella; Alessandra Perfetti; Beatrice Cardinali; Jose Manuel Garcia-Manteiga; Matteo Carrara; Claudia Provenzano; Paola Fuschi; Rosanna Cardani; Laura Valentina Renna; Giovanni Meola; Germana Falcone; Fabio Martelli

Myotonic dystrophy type 1 (DM1) is a multi-systemic disorder caused by abnormally expanded stretches of CTG DNA triplets in the DMPK gene, leading to mutated-transcript RNA-toxicity. MicroRNAs (miRNAs) are short non-coding RNAs that, after maturation, are loaded onto the RISC effector complex that destabilizes target mRNAs and represses their translation. In DM1 muscle biopsies not only the expression, but also the intracellular localization of specific miRNAs is disrupted, leading to the dysregulation of the relevant mRNA targets. To investigate the functional alterations of the miRNA/target interactions in DM1, we analyzed by RNA-sequencing the RISC-associated RNAs in skeletal muscle biopsies derived from DM1 patients and matched controls. The mRNAs found deregulated in DM1 biopsies were involved in pathways and functions relevant for the disease, such as energetic metabolism, calcium signaling, muscle contraction and p53-dependent apoptosis. Bioinformatic analysis of the miRNA/mRNA interactions based on the RISC enrichment profiles, identified 24 miRNA/mRNA correlations. Following validation in 21 independent samples, we focused on the couple miR-29c/ASB2 because of the role of miR-29c in fibrosis (a feature of late-stage DM1 patients) and of ASB2 in the regulation of muscle mass. Luciferase reporter assay confirmed the direct interaction between miR-29c and ASB2. Moreover, decreased miR-29c and increased ASB2 levels were verified also in immortalized myogenic cells and primary fibroblasts, derived from biopsies of DM1 patients and controls. CRISPR/Cas9-mediated deletion of CTG expansions rescued normal miR-29c and ASB2 levels, indicating a direct link between the mutant repeats and the miRNA/target expression. In conclusion, functionally relevant miRNA/mRNA interactions were identified in skeletal muscles of DM1 patients, highlighting the dysfunction of miR-29c and ASB2.


Experimental Cell Research | 1998

Eps8, a Tyrosine Kinase Substrate, Is Recruited to the Cell Cortex and Dynamic F-Actin upon Cytoskeleton Remodeling

Claudia Provenzano; Rita Gallo; Roberta Carbone; Pier Paolo Di Fiore; Germana Falcone; Loriana Castellani; Stefano Alemà


Journal of Cell Biology | 1995

Maintenance of the differentiated state in skeletal muscle: activation of v-Src disrupts sarcomeres in quail myotubes.

Loriana Castellani; M. Reedy; M C Gauzzi; Claudia Provenzano; Stefano Alemà; Germana Falcone

Collaboration


Dive into the Claudia Provenzano's collaboration.

Top Co-Authors

Avatar

Germana Falcone

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Stefano Alemà

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rita Gallo

University of L'Aquila

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liana Veneziano

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Marisa Cappella

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge