Béatrice Lauga
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Béatrice Lauga.
The ISME Journal | 2011
Philippe N. Bertin; Audrey Heinrich-Salmeron; Eric Pelletier; Florence Goulhen-Chollet; Florence Arsène-Ploetze; Sebastien Gallien; Béatrice Lauga; Corinne Casiot; Alexandra Calteau; David Vallenet; Violaine Bonnefoy; Odile Bruneel; Béatrice Chane-Woon-Ming; Jessica Cleiss-Arnold; Robert Duran; Françoise Elbaz-Poulichet; Nuria Fonknechten; Ludovic Giloteaux; David Halter; Sandrine Koechler; Marie Marchal; Damien Mornico; Christine Schaeffer; Adam Alexander Thil Smith; Alain Van Dorsselaer; Jean Weissenbach; Claudine Médigue; Denis Le Paslier
By their metabolic activities, microorganisms have a crucial role in the biogeochemical cycles of elements. The complete understanding of these processes requires, however, the deciphering of both the structure and the function, including synecologic interactions, of microbial communities. Using a metagenomic approach, we demonstrated here that an acid mine drainage highly contaminated with arsenic is dominated by seven bacterial strains whose genomes were reconstructed. Five of them represent yet uncultivated bacteria and include two strains belonging to a novel bacterial phylum present in some similar ecosystems, and which was named ‘Candidatus Fodinabacter communificans.’ Metaproteomic data unravelled several microbial capabilities expressed in situ, such as iron, sulfur and arsenic oxidation that are key mechanisms in biomineralization, or organic nutrient, amino acid and vitamin metabolism involved in synthrophic associations. A statistical analysis of genomic and proteomic data and reverse transcriptase–PCR experiments allowed us to build an integrated model of the metabolic interactions that may be of prime importance in the natural attenuation of such anthropized ecosystems.
Journal of Bacteriology | 2012
Régis Grimaud; Jean-François Ghiglione; Christine Cagnon; Béatrice Lauga; Pierre-Joseph Vaysse; Arturo Rodriguez-Blanco; Sophie Mangenot; Stéphane Cruveiller; Valérie Barbe; Robert Duran; Long-Fei Wu; Emmanuel Talla; Patricia Bonin; Valérie Michotey
Marinobacter hydrocarbonoclasticus SP17 forms biofilms specifically at the interface between water and hydrophobic organic compounds (HOCs) that are used as carbon and energy sources. Biofilm formation at the HOC-water interface has been recognized as a strategy to overcome the low availability of these nearly water-insoluble substrates. Here, we present the genome sequence of SP17, which could provide further insights into the mechanisms of enhancement of HOCs assimilation through biofilm formation.
FEMS Microbiology Ecology | 2014
Aurélie Volant; Odile Bruneel; Angélique Desoeuvre; Marina Héry; Corinne Casiot; Noëlle Bru; Sophie Delpoux; Anne Fahy; Fabien Javerliat; Olivier Bouchez; Robert Duran; Philippe N. Bertin; Françoise Elbaz-Poulichet; Béatrice Lauga
Deciphering the biotic and abiotic factors that control microbial community structure over time and along an environmental gradient is a pivotal question in microbial ecology. Carnoulès mine (France), which is characterized by acid waters and very high concentrations of arsenic, iron, and sulfate, provides an excellent opportunity to study these factors along the pollution gradient of Reigous Creek. To this end, biodiversity and spatiotemporal distribution of bacterial communities were characterized using T-RFLP fingerprinting and high-throughput sequencing. Patterns of spatial and temporal variations in bacterial community composition linked to changes in the physicochemical conditions suggested that species-sorting processes were at work in the acid mine drainage. Arsenic, temperature, and sulfate appeared to be the most important factors that drove the composition of bacterial communities along this continuum. Time series investigation along the pollution gradient also highlighted habitat specialization for some major members of the community (Acidithiobacillus and Thiomonas), dispersal for Acidithiobacillus, and evidence of extinction/re-thriving processes for Gallionella. Finally, pyrosequencing revealed a broader phylogenetic range of taxa than previous clone library-based diversity. Overall, our findings suggest that in addition to environmental filtering processes, additional forces (dispersal, birth/death events) could operate in AMD community.
Water Research | 2011
Armelle Paule; Béatrice Lauga; Loïc Ten-Hage; Jérôme Morchain; Robert Duran; Etienne Paul; Jean-Luc Rols
In their natural environment, the structure and functioning of microbial communities from river phototrophic biofilms are driven by biotic and abiotic factors. An understanding of the mechanisms that mediate the community structure, its dynamics and the biological succession processes during phototrophic biofilm development can be gained using laboratory-scale systems operating with controlled parameters. For this purpose, we present the design and description of a new prototype of a rotating annular bioreactor (RAB) (Taylor-Couette type flow, liquid working volume of 5.04 L) specifically adapted for the cultivation and investigation of phototrophic biofilms. The innovation lies in the presence of a modular source of light inside of the system, with the biofilm colonization and development taking place on the stationary outer cylinder (onto 32 removable polyethylene plates). The biofilm cultures were investigated under controlled turbulent flowing conditions and nutrients were provided using a synthetic medium (tap water supplemented with nitrate, phosphate and silica) to favour the biofilm growth. The hydrodynamic features of the water flow were characterized using a tracer method, showing behaviour corresponding to a completely mixed reactor. Shear stress forces on the surface of plates were also quantified by computer simulations and correlated with the rotational speed of the inner cylinder. Two phototrophic biofilm development experiments were performed for periods of 6.7 and 7 weeks with different inoculation procedures and illumination intensities. For both experiments, biofilm biomasses exhibited linear growth kinetics and produced 4.2 and 2.4 mg cm(-)² of ash-free dry matter. Algal and bacterial community structures were assessed by microscopy and T-RFLP, respectively, and the two experiments were different but revealed similar temporal dynamics. Our study confirmed the performance and multipurpose nature of such an innovative photosynthetic bioreactor for phototrophic biofilm investigations.
Science of The Total Environment | 2016
Benjamin Misson; Cédric Garnier; Béatrice Lauga; Duc Huy Dang; Jean-François Ghiglione; Jean-Ulrich Mullot; Robert Duran; Olivier Pringault
Investigating the impact of human activities on marine coastal ecosystems remains difficult because of the co-occurrence of numerous natural and human-induced gradients. Our aims were (i) to evaluate the links between the chemical environment as a whole and microbial diversity in the benthic compartment, and (ii) to compare the contributions of anthropogenic and natural chemical gradients to microbial diversity shifts. We studied surface sediments from 54 sampling sites in the semi-enclosed Toulon Bay (NW Mediterranean) exposed to high anthropogenic pressure. Previously published chemical data were completed by new measurements, resulting in an in depth geochemical characterization by 29 representative environmental variables. Bacterial and archaeal diversity was assessed by terminal restriction fragment length polymorphism profiling on a selection of samples distributed along chemical gradients. Multivariate statistical analyses explained from 45% to 80% of the spatial variation in microbial diversity, considering only the chemical variables. A selection of trace metals of anthropogenic origin appeared to be strong structural factors for both bacterial and archaeal communities. Bacterial terminal restriction fragment (T-RF) richness correlated strongly with both anthropogenic and natural chemical gradients, whereas archaeal T-RF richness demonstrated fewer links with chemical variables. No significant decrease in diversity was evidenced in relation to chemical contamination, suggesting a high adaptive potential of benthic microbial communities in Toulon Bay.
Aquatic Toxicology | 2013
Armelle Paule; Vincent Roubeix; Béatrice Lauga; Robert Duran; François Delmas; Etienne Paul; Jean-Luc Rols
Ecotoxicological experiments have been performed in laboratory-scale microcosms to investigate the sensitivity of phototrophic biofilm communities to the alachlor herbicide, in relation to the stages of phototrophic biofilm maturation (age of the phototrophic biofilms) and physical structure (intact biofilm versus recolonization). The phototrophic biofilms were initially cultivated on artificial supports in a prototype rotating annular bioreactor (RAB) with Taylor-Couette type flow under constant operating conditions. Biofilms were collected after 1.6 and 4.4 weeks of culture providing biofilms with different maturation levels, and then exposed to nominal initial alachlor concentration of 10 μg L(-1) in either intact or recolonized biofilms for 15 days in microcosms (mean time-weighted average concentration - TWAC of 5.52 ± 0.74 μg L(-1)). At the end of the exposure period, alachlor effects were monitored by a combination of biomass descriptors (ash-free dry mass - AFDM, chlorophyll a), structural molecular fingerprinting (T-RFLP), carbon utilization spectra (Biolog) and diatom species composition. We found significant effects that in terms of AFDM, alachlor inhibited growth of the intact phototrophic biofilms. No effect of alachlor was observed on diatom composition or functional and structural properties of the bacterial community regardless of whether they were intact or recolonized. The intact three-dimensional structure of the biofilm did not appear to confer protection from the effects of alachlor. Bacterial community structure and biomass level of 4.4 weeks - intact phototrophic biofilms were significantly influenced by the biofilm maturation processes rather than alachlor exposure. The diatom communities which were largely composed of mobile and colonizer life-form populations were not affected by alachlor. This study showed that the effect of alachlor (at initial concentration of 10 μg L(-1) or mean TWAC of 5.52 ± 0.74 μg L(-1)) is mainly limited to biomass reduction without apparent changes in the ecological succession trajectories of bacterial and diatom communities and suggested that carbon utilization spectra of the biofilm are not damaged resulting. These results confirmed the importance of considering the influence of maturation processes or community age when investigating herbicide effects. This is particularly important with regard to the use of phototrophic biofilms as bio-indicators.
Applied and Environmental Microbiology | 2017
Victoria Mesa; Alejandro Navazas; Ricardo González-Gil; A. González; Nele Weyens; Béatrice Lauga; J.R. Gallego; Jesus Sanchez; Ana I. Peláez
ABSTRACT The aim of this study was to investigate the potential of indigenous arsenic-tolerant bacteria to enhance arsenic phytoremediation by the autochthonous pseudometallophyte Betula celtiberica. The first goal was to perform an initial analysis of the entire rhizosphere and endophytic bacterial communities of the above-named accumulator plant, including the cultivable bacterial species. B. celtibericas microbiome was dominated by taxa related to Flavobacteriales, Burkholderiales, and Pseudomonadales, especially the Pseudomonas and Flavobacterium genera. A total of 54 cultivable rhizobacteria and 41 root endophytes, mainly affiliated with the phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria, were isolated and characterized with respect to several potentially useful features for metal plant accumulation, such as the ability to promote plant growth, metal chelation, and/or mitigation of heavy-metal stress. Seven bacterial isolates were further selected and tested for in vitro accumulation of arsenic in plants; four of them were finally assayed in field-scale bioaugmentation experiments. The exposure to arsenic in vitro caused an increase in the total nonprotein thiol compound content in roots, suggesting a detoxification mechanism through phytochelatin complexation. In the contaminated field, the siderophore and indole-3-acetic acid producers of the endophytic bacterial consortium enhanced arsenic accumulation in the leaves and roots of Betula celtiberica, whereas the rhizosphere isolate Ensifer adhaerens strain 91R mainly promoted plant growth. Field experimentation showed that additional factors, such as soil arsenic content and pH, influenced arsenic uptake in the plant, attesting to the relevance of field conditions in the success of phytoextraction strategies. IMPORTANCE Microorganisms and plants have developed several ways of dealing with arsenic, allowing them to resist and metabolize this metalloid. These properties form the basis of phytoremediation treatments and the understanding that the interactions of plants with soil bacteria are crucial for the optimization of arsenic uptake. To address this in our work, we initially performed a microbiome analysis of the autochthonous Betula celtiberica plants growing in arsenic-contaminated soils, including endosphere and rhizosphere bacterial communities. We then proceeded to isolate and characterize the cultivable bacteria that were potentially better suited to enhance phytoextraction efficiency. Eventually, we went to the field application stage. Our results corroborated the idea that recovery of pseudometallophyte-associated bacteria adapted to a large historically contaminated site and their use in bioaugmentation technologies are affordable experimental approaches and potentially very useful for implementing effective phytoremediation strategies with plants and their indigenous bacteria.
Frontiers in Microbiology | 2017
Victoria Mesa; J.R. Gallego; Ricardo González-Gil; Béatrice Lauga; Jesus Sanchez; Celia Méndez-García; Ana I. Peláez
Acid mine drainages are characterized by their low pH and the presence of dissolved toxic metallic species. Microorganisms survive in different microhabitats within the ecosystem, namely water, sediments, and biofilms. In this report, we surveyed the microbial diversity within all domains of life in the different microhabitats at Los Rueldos abandoned mercury underground mine (NW Spain), and predicted bacterial function based on community composition. Sediment samples contained higher proportions of soil bacteria (AD3, Acidobacteria), as well as Crenarchaeota and Methanomassiliicoccaceae archaea. Oxic and hypoxic biofilm samples were enriched in bacterial iron oxidizers from the genus Leptospirillum, order Acidithiobacillales, class Betaproteobacteria, and archaea from the class Thermoplasmata. Water samples were enriched in Cyanobacteria and Thermoplasmata archaea at a 3–98% of the sunlight influence, whilst Betaproteobacteria, Thermoplasmata archaea, and Micrarchaea dominated in acid water collected in total darkness. Stalactites hanging from the Fe-rich mine ceiling were dominated by the neutrophilic iron oxidizer Gallionella and other lineages that were absent in the rest of the microhabitats (e.g., Chlorobi, Chloroflexi). Eukaryotes were detected in biofilms and open-air water samples, and belonged mainly to clades SAR (Alveolata and Stramenopiles), and Opisthokonta (Fungi). Oxic and hypoxic biofilms displayed higher proportions of ciliates (Gonostomum, Oxytricha), whereas water samples were enriched in fungi (Paramicrosporidium and unknown microbial Helotiales). Predicted function through bacterial community composition suggested adaptive evolutive convergence of function in heterogeneous communities. Our study showcases a broad description of the microbial diversity across different microhabitats in the same environment and expands the knowledge on the diversity of microbial eukaryotes in AMD habitats.
Microbial Ecology | 2015
Anne Fahy; Ludovic Giloteaux; Philippe N. Bertin; Denis Le Paslier; Claudine Médigue; Jean Weissenbach; Robert Duran; Béatrice Lauga
To gain an in-depth insight into the diversity and the distribution of genes under the particular evolutionary pressure of an arsenic-rich acid mine drainage (AMD), the genes involved in bacterial arsenic detoxification (arsB, ACR3) and arsenite oxidation (aioA) were investigated in sediment from Carnoulès (France), in parallel to the diversity and global distribution of the metabolically active bacteria. The metabolically active bacteria were affiliated mainly to AMD specialists, i.e., organisms detected in or isolated from AMDs throughout the world. They included mainly Acidobacteria and the non-affiliated “Candidatus Fodinabacter communificans,” as well as Thiomonas and Acidithiobacillus spp., Actinobacteria, and unclassified Gammaproteobacteria. The distribution range of these organisms suggested that they show niche conservatism. Sixteen types of deduced protein sequences of arsenite transporters (5 ArsB and 11 Acr3p) were detected, whereas a single type of arsenite oxidase (AioA) was found. Our data suggested that at Carnoulès, the aioA gene was more recent than those encoding arsenite transporters and subjected to a different molecular evolution. In contrast to the 16S ribosomal RNA (16S rRNA) genes associated with AMD environments worldwide, the functional genes aioA, ACR3, and to a lesser extent arsB, were either novel or specific to Carnoulès, raising the question as to whether these functional genes are specific to high concentrations of arsenic, AMD-specific, or site-specific.
World Journal of Microbiology & Biotechnology | 2017
Yannick Eveno; Solange Karama; Okba Selama; Béatrice Lauga; Robert Duran; Hocine Hacène; Véronique Eparvier
A halotolerant Actinobacteria strain HR-4 was isolated from a salt lake soil sample in Algerian Sahara. Analysis of 16S rDNA gene sequence showed that strain HR-4 belonged to the genus Nocardiopsis. The similarity level ranges between 97.45 and 99.20% with Nocardiopsis species and Nocardiopsis rosea being the most closely related one. Morphological, physiological and phylogenetic characteristics comparisons showed significant differences with the nearest species. These data strongly suggest that strain HR-4 represents novel species. The antimicrobial activity of strain HR-4 showed an antibacterial activity against Gram-positive bacteria as well as an antifungal one. Two major natural products including a new one were isolated from the culture broth using various separation and purification procedures. The chemical structure established on the basis of spectroscopic studies NMR and by comparing with spectroscopic data from the literature of the two compounds affirm that they are classified in the group of Angucyclinones. This is the first report of a production of this type of molecules by the genus Nocardiopsis. The new natural compound was established as (−)-7-deoxy-8-O-methyltetrangomycin with a new configuration.