Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Duran is active.

Publication


Featured researches published by Robert Duran.


Applied and Environmental Microbiology | 2007

Effects of Heavy Fuel Oil on the Bacterial Community Structure of a Pristine Microbial Mat

Sylvain Bordenave; María Soledad Goñi-Urriza; Pierre Caumette; Robert Duran

ABSTRACT The effects of petroleum contamination on the bacterial community of a pristine microbial mat from Salins-de-Giraud (Camargue, France) have been investigated. Mats were maintained as microcosms and contaminated with no. 2 fuel oil from the wreck of the Erika. The evolution of the complex bacterial community was monitored by combining analyses based on 16S rRNA genes and their transcripts. 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) analyses clearly showed the effects of the heavy fuel oil after 60 days of incubation. At the end of the experiment, the initial community structure was recovered, illustrating the resilience of this microbial ecosystem. In addition, the responses of the metabolically active bacterial community were evaluated by T-RFLP and clone library analyses based on 16S rRNA. Immediately after the heavy fuel oil was added to the microcosms, the structure of the active bacterial community was modified, indicating a rapid microbial mat response. Members of the Gammaproteobacteria were initially dominant in the contaminated microcosms. Pseudomonas and Acinetobacter were the main genera representative of this class. After 90 days of incubation, the Gammaproteobacteria were superseded by “Bacilli” and Alphaproteobacteria. This study shows the major changes that occur in the microbial mat community at different time periods following contamination. At the conclusion of the experiment, the RNA approach also demonstrated the resilience of the microbial mat community in resisting environmental stress resulting from oil pollution.


Applied and Environmental Microbiology | 2006

Diversity of Microorganisms in Fe-As-Rich Acid Mine Drainage Waters of Carnoulès, France

Odile Bruneel; Robert Duran; Corinne Casiot; Françoise Elbaz-Poulichet; Jean-Christian Personné

ABSTRACT The acid waters (pH 2.7 to 3.4) originating from the Carnoulès mine tailings contain high concentrations of dissolved arsenic (80 to 350 mg · liter−1), iron (750 to 2,700 mg · liter−1), and sulfate (2,000 to 7,500 mg · liter−1). During the first 30 m of downflow in Reigous creek issuing from the mine tailings, 20 to 60% of the dissolved arsenic is removed by coprecipitation with Fe(III). The microbial communities along the creek have been characterized using terminal-restriction fragment length polymorphism (T-RFLP) and 16S rRNA gene library analyses. The results indicate a low bacterial diversity in comparison with unpolluted water. Eighty percent of the sequences obtained are related to sequences from uncultured, newly described organisms or recently associated with acid mine drainage. As expected owing to the water chemistry, the sequences recovered are mainly related to bacteria involved in the geochemical Fe and S cycles. Among them, sequences related to uncultured TrefC4 affiliated with Gallionella ferruginea, a neutrophilic Fe-oxidizing bacterium, are dominant. The description of the bacterial community structure and its dynamics lead to a better understanding of the natural remediation processes occurring at this site.


The ISME Journal | 2011

Metabolic diversity among main microorganisms inside an arsenic-rich ecosystem revealed by meta- and proteo-genomics

Philippe N. Bertin; Audrey Heinrich-Salmeron; Eric Pelletier; Florence Goulhen-Chollet; Florence Arsène-Ploetze; Sebastien Gallien; Béatrice Lauga; Corinne Casiot; Alexandra Calteau; David Vallenet; Violaine Bonnefoy; Odile Bruneel; Béatrice Chane-Woon-Ming; Jessica Cleiss-Arnold; Robert Duran; Françoise Elbaz-Poulichet; Nuria Fonknechten; Ludovic Giloteaux; David Halter; Sandrine Koechler; Marie Marchal; Damien Mornico; Christine Schaeffer; Adam Alexander Thil Smith; Alain Van Dorsselaer; Jean Weissenbach; Claudine Médigue; Denis Le Paslier

By their metabolic activities, microorganisms have a crucial role in the biogeochemical cycles of elements. The complete understanding of these processes requires, however, the deciphering of both the structure and the function, including synecologic interactions, of microbial communities. Using a metagenomic approach, we demonstrated here that an acid mine drainage highly contaminated with arsenic is dominated by seven bacterial strains whose genomes were reconstructed. Five of them represent yet uncultivated bacteria and include two strains belonging to a novel bacterial phylum present in some similar ecosystems, and which was named ‘Candidatus Fodinabacter communificans.’ Metaproteomic data unravelled several microbial capabilities expressed in situ, such as iron, sulfur and arsenic oxidation that are key mechanisms in biomineralization, or organic nutrient, amino acid and vitamin metabolism involved in synthrophic associations. A statistical analysis of genomic and proteomic data and reverse transcriptase–PCR experiments allowed us to build an integrated model of the metabolic interactions that may be of prime importance in the natural attenuation of such anthropized ecosystems.


FEMS Microbiology Ecology | 2008

Structure of bacterial communities along a hydrocarbon contamination gradient in a coastal sediment

Sandrine Païssé; Frédéric Coulon; Marisol Goñi-Urriza; Louis Peperzak; Terry J. McGenity; Robert Duran

The bacterial diversity of a chronically oil-polluted retention basin sediment located in the Berre lagoon (Etang-de-Berre, France) was investigated. This study combines chemical and molecular approaches in order to define how the in situ petroleum hydrocarbon contamination level affects the bacterial community structure of a subsurface sediment. Hydrocarbon content analysis clearly revealed a gradient of hydrocarbon contamination in both the water and the sediment following the basin periphery from the pollution input to the lagoon water. The nC17 and pristane concentrations suggested alkane biodegradation in the sediments. These results, combined with those of terminal-restriction fragment length polymorphism analysis of the 16S rRNA genes, indicated that bacterial community structure was obviously associated with the gradient of oil contamination. The analysis of bacterial community composition revealed dominance of bacteria related to the Proteobacteria phylum (Gamma-, Delta-, Alpha-, Epsilon- and Betaproteobacteria), Bacteroidetes and Verrucomicrobium groups and Spirochaetes, Actinobacteria and Cyanobacteria phyla. The adaptation of the bacterial community to oil contamination was not characterized by dominance of known oil-degrading bacteria, because a predominance of populations associated to the sulphur cycle was observed. The input station presented particular bacterial community composition associated with a low oil concentration in the sediment, indicating the adaptation of this community to the oil contamination.


Archive | 2008

Structure of sediment-associated bacterial communities along a hydrocarboncontamination gradient in coastal sediment

Frédéric Coulon; Louis Peperzak; Terry J. McGenity; Robert Duran

The bacterial diversity of a chronically oil-polluted retention basin sediment located in the Berre lagoon (Etang-de-Berre, France) was investigated. This study combines chemical and molecular approaches in order to define how the in situ petroleum hydrocarbon contamination level affects the bacterial community structure of a subsurface sediment. Hydrocarbon content analysis clearly revealed a gradient of hydrocarbon contamination in both the water and the sediment following the basin periphery from the pollution input to the lagoon water. The nC17 and pristane concentrations suggested alkane biodegradation in the sediments. These results, combined with those of terminal-restriction fragment length polymorphism analysis of the 16S rRNA genes, indicated that bacterial community structure was obviously associated with the gradient of oil contamination. The analysis of bacterial community composition revealed dominance of bacteria related to the Proteobacteria phylum (Gamma-, Delta-, Alpha-, Epsilon- and Betaproteobacteria), Bacteroidetes and Verrucomicrobium groups and Spirochaetes, Actinobacteria and Cyanobacteria phyla. The adaptation of the bacterial community to oil contamination was not characterized by dominance of known oil-degrading bacteria, because a predominance of populations associated to the sulphur cycle was observed. The input station presented particular bacterial community composition associated with a low oil concentration in the sediment, indicating the adaptation of this community to the oil contamination.


Geomicrobiology Journal | 2009

Overview of Mercury Methylation Capacities among Anaerobic Bacteria Including Representatives of the Sulphate-Reducers: Implications for Environmental Studies

M. Ranchou-Peyruse; M. Monperrus; R. Bridou; Robert Duran; D. Amouroux; J. C. Salvado; R. Guyoneaud

Mercury methylation has been extensively reported in the literature among “Firmicutes” and “Proteobacteria.” Nevertheless, results are hardly comparable because of differences in initial inorganic mercury concentrations used. The use of stable isotopic tracers now permits to study mercury transformations at concentrations close to environmental levels. Here, several strains, including strict fermentative and sulphate-reducing bacteria, were tested for their mercury methylation capacities and the results were compared with data available to date. Under such conditions, mercury methylation only occurs among the delta-Proteobacteria. The absence of relation between taxonomic/phylogenetic affiliation and mercury methylation capacities was pointed out and discussed for environmental studies.


Journal of Applied Microbiology | 2008

Characterization of aerobic polycyclic aromatic hydrocarbon-degrading bacteria from Bizerte lagoon sediments, Tunisia

O. Ben Said; Marisol Goñi-Urriza; M. El Bour; Mohamed Dellali; Patricia Aissa; Robert Duran

Aims:  To characterize polycyclic aromatic hydrocarbon (PAH)‐degrading bacteria from sediments of the Bizerte lagoon, and to determine their ability to resist other pollutants such as antibiotics and heavy metals.


Microbial Ecology | 2003

Microbial Mats on the Orkney Islands Revisited: Microenvironment and Microbial Community Composition

A. Wieland; Michael Kühl; L. McGowan; Aude Fourçans; Robert Duran; Pierre Caumette; T. García de Oteyza; Joan O. Grimalt; A. Solé; Elia Diestra; Isabel Esteve; R. A. Herbert

The microenvironment and community composition of microbial mats developing on beaches in Scapa Flow (Orkney Islands) were investigated. Analysis of characteristic biomarkers (major fatty acids, hydrocarbons, alcohols, and alkenones) revealed the presence of different groups of bacteria and microalgae in mats from Waulkmill and Swanbister beach, including diatoms, Haptophyceae, cyanobacteria, and sulfate-reducing bacteria. These analyses also indicated the presence of methanogens, especially in Swanbister beach mats, and therefore a possible role of methanogenesis for the carbon cycle of these sediments. High amounts of algal lipids and slightly higher numbers (genera, abundances) of cyanobacteria were found in Waulkmill Bay mats. However, overall only a few genera and low numbers of unicellular and filamentous cyanobacteria were present in mats from Waulkmill and Swanbister beach, as deduced from CLSM (confocal laser scanning microscopy) analysis. Spectral scalar irradiance measurements with fiber-optic microprobes indicated a pronounced heterogeneity concerning zonation and density of mainly anoxygenic phototrophs in Swanbister Bay mats. By microsensor and T-RFLP (terminal restriction fragment length polymorphism) analysis in Swanbister beach mats, the depth distribution of different populations of purple and sulfate-reducing bacteria could be related to the microenvironmental conditions. Oxygen, but also sulfide and other (inorganic and organic) sulfur compounds, seems to play an important role in the stratification and diversity of these two major bacterial groups involved in sulfur cycling in Swanbister beach mats.


PLOS ONE | 2013

Impact of oil on bacterial community structure in bioturbated sediments

Magalie Stauffert; Cristiana Cravo-Laureau; Ronan Jézéquel; Sandra Barantal; Philippe Cuny; Franck Gilbert; Christine Cagnon; Cécile Militon; David Amouroux; Fatima Mahdaoui; Brice Bouyssiere; Georges Stora; François-Xavier Merlin; Robert Duran

Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions – with tidal cycles and natural seawater – was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g−1 wet sediment), the common burrowing organism Hediste (Nereis) diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled) showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition) revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by Gammaproteobacteria and Deltaproteobacteria. In the oiled-microcosms, the addition of H. diversicolor reduced the phylotype-richness, sequences associated to Actinobacteria, Firmicutes and Plantomycetes were not detected. These observations highlight the influence of the bioturbation on the bacterial community structure without affecting the biodegradation capacities.


Applied and Environmental Microbiology | 2012

Central Role of Dynamic Tidal Biofilms Dominated by Aerobic Hydrocarbonoclastic Bacteria and Diatoms in the Biodegradation of Hydrocarbons in Coastal Mudflats

Frédéric Coulon; Panagiota-Myrsini Chronopoulou; Anne Fahy; Sandrine Païssé; Marisol Goñi-Urriza; Louis Peperzak; Laura Acuña Alvarez; Boyd A. McKew; Corina P. D. Brussaard; Graham J. C. Underwood; Kenneth N. Timmis; Robert Duran; Terry J. McGenity

ABSTRACT Mudflats and salt marshes are habitats at the interface of aquatic and terrestrial systems that provide valuable services to ecosystems. Therefore, it is important to determine how catastrophic incidents, such as oil spills, influence the microbial communities in sediment that are pivotal to the function of the ecosystem and to identify the oil-degrading microbes that mitigate damage to the ecosystem. In this study, an oil spill was simulated by use of a tidal chamber containing intact diatom-dominated sediment cores from a temperate mudflat. Changes in the composition of bacteria and diatoms from both the sediment and tidal biofilms that had detached from the sediment surface were monitored as a function of hydrocarbon removal. The hydrocarbon concentration in the upper 1.5 cm of sediments decreased by 78% over 21 days, with at least 60% being attributed to biodegradation. Most phylotypes were minimally perturbed by the addition of oil, but at day 21, there was a 10-fold increase in the amount of cyanobacteria in the oiled sediment. Throughout the experiment, phylotypes associated with the aerobic degradation of hydrocarbons, including polycyclic aromatic hydrocarbons (PAHs) (Cycloclasticus) and alkanes (Alcanivorax, Oleibacter, and Oceanospirillales strain ME113), substantively increased in oiled mesocosms, collectively representing 2% of the pyrosequences in the oiled sediments at day 21. Tidal biofilms from oiled cores at day 22, however, consisted mostly of phylotypes related to Alcanivorax borkumensis (49% of clones), Oceanospirillales strain ME113 (11% of clones), and diatoms (14% of clones). Thus, aerobic hydrocarbon biodegradation is most likely to be the main mechanism of attenuation of crude oil in the early weeks of an oil spill, with tidal biofilms representing zones of high hydrocarbon-degrading activity.

Collaboration


Dive into the Robert Duran's collaboration.

Top Co-Authors

Avatar

Cristiana Cravo-Laureau

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Marisol Goñi-Urriza

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Pierre Caumette

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Béatrice Lauga

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Christine Cagnon

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olfa Ben Said

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandrine Païssé

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge