Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Beatriz Perdiguero is active.

Publication


Featured researches published by Beatriz Perdiguero.


PLOS Pathogens | 2009

Innate Immune Sensing of Modified Vaccinia Virus Ankara (MVA) Is Mediated by TLR2-TLR6, MDA-5 and the NALP3 Inflammasome

Julie Delaloye; Thierry Roger; Quynh-Giao Steiner-Tardivel; Didier Le Roy; Marlies Knaup Reymond; Shizuo Akira; Virginie Pétrilli; Carmen Elena Gómez; Beatriz Perdiguero; Jürg Tschopp; Giuseppe Pantaleo; Mariano Esteban; Thierry Calandra

Modified vaccinia virus Ankara (MVA) is an attenuated double-stranded DNA poxvirus currently developed as a vaccine vector against HIV/AIDS. Profiling of the innate immune responses induced by MVA is essential for the design of vaccine vectors and for anticipating potential adverse interactions between naturally acquired and vaccine-induced immune responses. Here we report on innate immune sensing of MVA and cytokine responses in human THP-1 cells, primary human macrophages and mouse bone marrow-derived macrophages (BMDMs). The innate immune responses elicited by MVA in human macrophages were characterized by a robust chemokine production and a fairly weak pro-inflammatory cytokine response. Analyses of the cytokine production profile of macrophages isolated from knockout mice deficient in Toll-like receptors (TLRs) or in the adapter molecules MyD88 and TRIF revealed a critical role for TLR2, TLR6 and MyD88 in the production of IFNβ-independent chemokines. MVA induced a marked up-regulation of the expression of RIG-I like receptors (RLR) and the IPS-1 adapter (also known as Cardif, MAVS or VISA). Reduced expression of RIG-I, MDA-5 and IPS-1 by shRNAs indicated that sensing of MVA by RLR and production of IFNβ and IFNβ-dependent chemokines was controlled by the MDA-5 and IPS-1 pathway in the macrophage. Crosstalk between TLR2-MyD88 and the NALP3 inflammasome was essential for expression and processing of IL-1β. Transcription of the Il1b gene was markedly impaired in TLR2−/− and MyD88−/− BMDM, whereas mature and secreted IL-1β was massively reduced in NALP3−/− BMDMs or in human THP-1 macrophages with reduced expression of NALP3, ASC or caspase-1 by shRNAs. Innate immune sensing of MVA and production of chemokines, IFNβ and IL-1β by macrophages is mediated by the TLR2-TLR6-MyD88, MDA-5-IPS-1 and NALP3 inflammasome pathways. Delineation of the host response induced by MVA is critical for improving our understanding of poxvirus antiviral escape mechanisms and for designing new MVA vaccine vectors with improved immunogenicity.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Immunization with HIV Gag targeted to dendritic cells followed by recombinant New York vaccinia virus induces robust T-cell immunity in nonhuman primates

Barbara J. Flynn; Kathrin Kastenmüller; Ulrike Wille-Reece; Georgia D. Tomaras; Munir Alam; Ross W. B. Lindsay; Andres M. Salazar; Beatriz Perdiguero; Carmen Elena Gómez; Ralf Wagner; Mariano Esteban; Chae G. Park; Christine Trumpfheller; Tibor Keler; Giuseppe Pantaleo; Ralph M. Steinman; Robert A. Seder

Protein vaccines, if rendered immunogenic, would facilitate vaccine development against HIV and other pathogens. We compared in nonhuman primates (NHPs) immune responses to HIV Gag p24 within 3G9 antibody to DEC205 (“DEC-HIV Gag p24”), an uptake receptor on dendritic cells, to nontargeted protein, with or without poly ICLC, a synthetic double stranded RNA, as adjuvant. Priming s.c. with 60 μg of both HIV Gag p24 vaccines elicited potent CD4+ T cells secreting IL-2, IFN-γ, and TNF-α, which also proliferated. The responses increased with each of three immunizations and recognized multiple Gag peptides. DEC-HIV Gag p24 showed better cross-priming for CD8+ T cells, whereas the avidity of anti-Gag antibodies was ∼10-fold higher with nontargeted Gag 24 protein. For both protein vaccines, poly ICLC was essential for T- and B-cell immunity. To determine whether adaptive responses could be further enhanced, animals were boosted with New York vaccinia virus (NYVAC)-HIV Gag/Pol/Nef. Gag-specific CD4+ and CD8+ T-cell responses increased markedly after priming with both protein vaccines and poly ICLC. These data reveal qualitative differences in antibody and T-cell responses to DEC-HIV Gag p24 and Gag p24 protein and show that prime boost with protein and adjuvant followed by NYVAC elicits potent cellular immunity.


Current Gene Therapy | 2011

MVA and NYVAC as Vaccines against Emergent Infectious Diseases and Cancer

Carmen Elena Gómez; José Luis Nájera; Magdalena Krupa; Beatriz Perdiguero; Mariano Esteban

Recombinants based on poxviruses have been used extensively as gene delivery systems to study many biological functions of foreign genes and as vaccines against many pathogens, particularly in the veterinary field. Based on safety record, efficient expression and ability to trigger specific immune responses, two of the most promising poxvirus vectors for human use are the attenuated modified vaccinia virus Ankara (MVA) and the Copenhagen derived NYVAC strains. Because of the scientific and clinical interest in these two vectors, here we review their biological characteristics, with emphasis on virus-host cell interactions, viral immunomodulators, gene expression profiling, virus distribution in animals, and application as vaccines against different pathogens and tumors.


Vaccine | 2011

Safety and immunogenicity of a modified pox vector-based HIV/AIDS vaccine candidate expressing Env, Gag, Pol and Nef proteins of HIV-1 subtype B (MVA-B) in healthy HIV-1-uninfected volunteers: A phase I clinical trial (RISVAC02).

Felipe García; Juan Carlos López Bernaldo de Quirós; Carmen Elena Gómez; Beatriz Perdiguero; José Luis Nájera; Victoria Jiménez; Juan García-Arriaza; Alberto C. Guardo; Iñaki Pérez; Vicens Díaz-Brito; Matilde Sánchez Conde; Nuria González; Amparo Álvarez; José Alcamí; Jose L. Jimenez; Judit Pich; Joan Albert Arnaiz; Maria J. Maleno; Agathe León; María Ángeles Muñoz-Fernández; Peter Liljeström; Jonathan Weber; Giuseppe Pantaleo; José M. Gatell; Montserrat Plana; Mariano Esteban

BACKGROUND To investigate the safety and immunogenicity of a modified vaccinia virus Ankara vector expressing HIV-1 antigens from clade B (MVA-B), a phase-I, doubled-blind placebo-controlled trial was performed. METHODS 30 HIV-uninfected volunteers at low risk of HIV-1 infection were randomly allocated to receive 3 intramuscular injections (1×10(8)pfu/dose) of MVA-B (n=24) or placebo (n=6) at weeks 0, 4 and 16. All volunteers were followed 48 weeks. Primary end-points were adverse events and immunogenicity. RESULTS A total of 169 adverse events were reported, 164 of grade 1-2, and 5 of grade 3 (none related to vaccination). Overall 75% of the volunteers showed positive ELISPOT responses at any time point. The magnitude (median) of the total responses induced was 288SFC/10(6)PBMC at week 18. Antibody responses against Env were observed in 95% and 72% of vaccinees at week 18 and 48, respectively. HIV-1 neutralizing antibodies were detected in 33% of volunteers. CONCLUSIONS MVA-B was safe, well tolerated and elicited strong and durable T-cell and antibody responses in 75% and 95% of volunteers, respectively. These data support further exploration of MVA-B as an HIV-1 vaccine candidate. Clinical Trials.gov identifier: NCT00679497.


PLOS ONE | 2011

Improved NYVAC-Based Vaccine Vectors

Karen V. Kibler; Carmen Elena Gómez; Beatriz Perdiguero; Shukmei Wong; Trung Huynh; Susan A. Holechek; William D. Arndt; Victoria Jiménez; Rubén González-Sanz; Karen L. Denzler; Elias K. Haddad; Ralf Wagner; Rafick Pierre Sekaly; James Tartaglia; Giuseppe Pantaleo; Bertram L. Jacobs; Mariano Esteban

While as yet there is no vaccine against HIV/AIDS, the results of the phase III Thai trial (RV144) have been encouraging and suggest that further improvements of the prime/boost vaccine combination of a poxvirus and protein are needed. With this aim, in this investigation we have generated derivatives of the candidate vaccinia virus vaccine vector NYVAC with potentially improved functions. This has been achieved by the re-incorporation into the virus genome of two host range genes, K1L and C7L, in conjunction with the removal of the immunomodulatory viral molecule B19, an antagonist of type I interferon action. These novel virus vectors, referred to as NYVAC-C-KC and NYVAC-C-KC-ΔB19R, have acquired relevant biological characteristics, giving higher levels of antigen expression in infected cells, replication-competency in human keratinocytes and dermal fibroblasts, activation of selective host cell signal transduction pathways, and limited virus spread in tissues. Importantly, these replication-competent viruses have been demonstrated to maintain a highly attenuated phenotype.


Viruses | 2015

The Evolution of Poxvirus Vaccines

Lucas Sánchez-Sampedro; Beatriz Perdiguero; Ernesto Mejías-Pérez; Juan García-Arriaza; Mauro Di Pilato; Mariano Esteban

After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases.


Human Vaccines & Immunotherapeutics | 2012

Poxvirus vectors as HIV/AIDS vaccines in humans

Carmen Elena Gómez; Beatriz Perdiguero; Juan García-Arriaza; Mariano Esteban

The RV144 phase III clinical trial with the combination of the poxvirus vector ALVAC and the HIV gp120 protein has taught us that a vaccine against HIV/AIDS is possible but further improvements are still needed. Although the HIV protective effect of RV144 was modest (31.2%), these encouraging results reinforce the use of poxvirus vectors as HIV/AIDS vaccine candidates. In this review we focus on the prophylactic clinical studies thus far performed with the more widely studied poxvirus vectors, ALVAC, MVA, NYVAC and fowlpox expressing HIV antigens. We describe the characteristics of each vector administered either alone or in combination with other vectors, with emphasis on the immune parameters evaluated in healthy volunteers, percentage of responders and triggering of humoral and T cell responses. Some of these immunogens induced broad, polyfunctional and long-lasting CD4+ and CD8+ T cell responses to HIV-1 antigens in most volunteers, with preference for effector memory T cells, and neutralizing antibodies, immune parameters that might be relevant in protection. Finally, we consider improvements in immunogenicity of the poxvirus vectors by the selective deletion of viral immunomodulatory genes and insertion of host range genes in the poxvirus genome. Overall, the poxvirus vectors have proven to be excellent HIV/AIDS vaccine candidates, with distinct behavior among them, and the future implementation will be dictated by their optimized immune profile in clinical trials.


Journal of Virology | 2011

The HIV/AIDS Vaccine Candidate MVA-B Administered as a Single Immunogen in Humans Triggers Robust, Polyfunctional, and Selective Effector Memory T Cell Responses to HIV-1 Antigens

Carmen Elena Gómez; José Luis Nájera; Beatriz Perdiguero; Juan García-Arriaza; Carlos Oscar S. Sorzano; Victoria Jiménez; Rubén González-Sanz; Jose L. Jimenez; María Ángeles Muñoz-Fernández; Juan Carlos López Bernaldo de Quirós; Alberto C. Guardo; Felipe García; José M. Gatell; Montserrat Plana; Mariano Esteban

ABSTRACT Attenuated poxvirus vectors expressing human immunodeficiency virus type 1 (HIV-1) antigens are considered promising HIV/AIDS vaccine candidates. Here, we describe the nature of T cell immune responses induced in healthy volunteers participating in a phase I clinical trial in Spain after intramuscular administration of three doses of the recombinant MVA-B-expressing monomeric gp120 and the fused Gag-Pol-Nef (GPN) polyprotein of clade B. The majority (92.3%) of the volunteers immunized had a positive specific T cell response at any time postvaccination as detected by gamma interferon (IFN-γ) intracellular cytokine staining (ICS) assay. The CD4+ T cell responses were predominantly Env directed, whereas the CD8+ T cell responses were similarly distributed against Env, Gag, and GPN. The proportion of responders after two doses of MVA-B was similar to that obtained after the third dose of MVA-B vaccination, and the responses were sustained (84.6% at week 48). Vaccine-induced CD8+ T cells to HIV-1 antigens after 1 year were polyfunctional and distributed mainly within the effector memory (TEM) and terminally differentiated effector memory (TEMRA) T cell populations. Antivector T cell responses were mostly induced by CD8+ T cells, highly polyfunctional, and of TEMRA phenotype. These findings demonstrate that the poxvirus MVA-B vaccine candidate given alone is highly immunogenic, inducing broad, polyfunctional, and long-lasting CD4 and CD8 T cell responses to HIV-1 antigens, with preference for TEM. Thus, on the basis of the immune profile of MVA-B in humans, this immunogen can be considered a promising HIV/AIDS vaccine candidate.


PLOS ONE | 2012

Improving the MVA Vaccine Potential by Deleting the Viral Gene Coding for the IL-18 Binding Protein

Juliana Falivene; María Paula Del Médico Zajac; María Fernanda Pascutti; Ana María Rodríguez; Cynthia Maeto; Beatriz Perdiguero; Carmen Elena Gómez; Mariano Esteban; Gabriela Calamante

Background Modified Vaccinia Ankara (MVA) is an attenuated strain of Vaccinia virus (VACV) currently employed in many clinical trials against HIV/AIDS and other diseases. MVA still retains genes involved in host immune response evasion, enabling its optimization by removing some of them. The aim of this study was to evaluate cellular immune responses (CIR) induced by an IL-18 binding protein gene (C12L) deleted vector (MVAΔC12L). Methodology/Principal Findings BALB/c and C57BL/6 mice were immunized with different doses of MVAΔC12L or MVA wild type (MVAwt), then CIR to VACV epitopes in immunogenic proteins were evaluated in spleen and draining lymph nodes at acute and memory phases (7 and 40 days post-immunization respectively). Compared with parental MVAwt, MVAΔC12L immunization induced a significant increase of two to three-fold in CD8+ and CD4+ T-cell responses to different VACV epitopes, with increased percentage of anti-VACV cytotoxic CD8+ T-cells (CD107a/b+) during the acute phase of the response. Importantly, the immunogenicity enhancement was also observed after MVAΔC12L inoculation with different viral doses and by distinct routes (systemic and mucosal). Potentiation of MVAs CIR was also observed during the memory phase, in correlation with a higher protection against an intranasal challenge with VACV WR. Of note, we could also show a significant increase in the CIR against HIV antigens such as Env, Gag, Pol and Nef from different subtypes expressed from two recombinants of MVAΔC12L during heterologous DNA prime/MVA boost vaccination regimens. Conclusions/Significance This study demonstrates the relevance of IL-18 bp contribution in the immune response evasion during MVA infection. Our findings clearly show that the deletion of the viral IL-18 bp gene is an effective approach to increase MVA vaccine efficacy, as immunogenicity improvements were observed against vector antigens and more importantly to HIV antigens.


PLOS ONE | 2011

Improved Innate and Adaptive Immunostimulation by Genetically Modified HIV-1 Protein Expressing NYVAC Vectors

Esther D. Quakkelaar; Anke Redeker; Elias K. Haddad; Alexandre Harari; Stella Mayo McCaughey; Thomas Duhen; Abdelali Filali-Mouhim; Jean Philippe Goulet; Nikki M. Loof; Ferry Ossendorp; Beatriz Perdiguero; Paul P. Heinen; Carmen Elena Gómez; Karen V. Kibler; David M. Koelle; Rafick Pierre Sekaly; Federica Sallusto; Antonio Lanzavecchia; Giuseppe Pantaleo; Mariano Esteban; Jim Tartaglia; Bertram L. Jacobs; Cornelis J. M. Melief

Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs), RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines.

Collaboration


Dive into the Beatriz Perdiguero's collaboration.

Top Co-Authors

Avatar

Mariano Esteban

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Carmen Elena Gómez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos Oscar S. Sorzano

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Juan García-Arriaza

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Victoria Jiménez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

José Luis Nájera

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge