Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José Luis Nájera is active.

Publication


Featured researches published by José Luis Nájera.


Current Gene Therapy | 2008

The poxvirus vectors MVA and NYVAC as gene delivery systems for vaccination against infectious diseases and cancer.

Carmen Elena Gómez; José Luis Nájera; Magdalena Krupa; Mariano Esteban

Recombinants based on poxviruses have been used extensively as gene delivery systems to study many biological functions of foreign genes and as vaccines against many pathogens, particularly in the veterinary field. Based on safety record, efficient expression and ability to trigger specific immune responses, two of the most promising poxvirus vectors for human use are the attenuated modified vaccinia virus Ankara (MVA) and the Copenhagen derived NYVAC strains. Because of the scientific and clinical interest in these two vectors, here we review their biological characteristics, with emphasis on virus-host cell interactions, viral immunomodulators, gene expression profiling, virus distribution in animals, and application as vaccines against different pathogens and tumors.


Journal of Virology | 2007

Distinct Gene Expression Profiling after Infection of Immature Human Monocyte-Derived Dendritic Cells by the Attenuated Poxvirus Vectors MVA and NYVAC

Susana Guerra; José Luis Nájera; José Manuel Rodríguez González; Luis A. López-Fernández; Núria Climent; José M. Gatell; Teresa Gallart; Mariano Esteban

ABSTRACT Although recombinants based on the attenuated poxvirus vectors MVA and NYVAC are currently in clinical trials, the nature of the genes triggered by these vectors in antigen-presenting cells is poorly characterized. Using microarray technology and various analysis conditions, we compared specific changes in gene expression profiling following MVA and NYVAC infection of immature human monocyte-derived dendritic cells (MDDC). Microarray analysis was performed at 6 h postinfection, since these viruses induced extensive cytopathic effects, rRNA breakdown, and apoptosis at late times postinfection. MVA- and NYVAC-infected MDDC shared upregulation of 195 genes compared to uninfected cells: MVA specifically upregulated 359 genes, and NYVAC upregulated 165 genes. Microarray comparison of NYVAC and MVA infection revealed 544 genes with distinct expression patterns after poxvirus infection and 283 genes specifically upregulated after MVA infection. Both vectors upregulated genes for cytokines, cytokine receptors, chemokines, chemokine receptors, and molecules involved in antigen uptake and processing, including major histocompatibility complex genes. mRNA levels for interleukin 12β (IL-12β), beta interferon, and tumor necrosis factor alpha were higher after MVA infection than after NYVAC infection. The expression profiles of transcription factors such as NF-κB/Rel and STAT were regulated similarly by both viruses; in contrast, OASL, MDA5, and IRIG-I expression increased only during MVA infection. Type I interferon, IL-6, and Toll-like receptor pathways were specifically induced after MVA infection. Following MVA or NYVAC infection in MDDC, we found similarities as well as differences between these virus strains in the expression of cellular genes with immunological function, which should have an impact when these vectors are used as recombinant vaccines.


Current Gene Therapy | 2011

MVA and NYVAC as Vaccines against Emergent Infectious Diseases and Cancer

Carmen Elena Gómez; José Luis Nájera; Magdalena Krupa; Beatriz Perdiguero; Mariano Esteban

Recombinants based on poxviruses have been used extensively as gene delivery systems to study many biological functions of foreign genes and as vaccines against many pathogens, particularly in the veterinary field. Based on safety record, efficient expression and ability to trigger specific immune responses, two of the most promising poxvirus vectors for human use are the attenuated modified vaccinia virus Ankara (MVA) and the Copenhagen derived NYVAC strains. Because of the scientific and clinical interest in these two vectors, here we review their biological characteristics, with emphasis on virus-host cell interactions, viral immunomodulators, gene expression profiling, virus distribution in animals, and application as vaccines against different pathogens and tumors.


Journal of Virology | 2008

Differential CD4+ versus CD8+ T-Cell Responses Elicited by Different Poxvirus-Based Human Immunodeficiency Virus Type 1 Vaccine Candidates Provide Comparable Efficacies in Primates

Petra Mooij; Sunita S. Balla-Jhagjhoorsingh; Gerrit Koopman; Niels Beenhakker; Patricia van Haaften; Ilona Baak; Ivonne G. Nieuwenhuis; Ivanela Kondova; Ralf Wagner; Hans Wolf; Carmen Elena Gómez; José Luis Nájera; Victoria Jiménez; Mariano Esteban; Jonathan L. Heeney

ABSTRACT Poxvirus vectors have proven to be highly effective for boosting immune responses in diverse vaccine settings. Recent reports reveal marked differences in the gene expression of human dendritic cells infected with two leading poxvirus-based human immunodeficiency virus (HIV) vaccine candidates, New York vaccinia virus (NYVAC) and modified vaccinia virus Ankara (MVA). To understand how complex genomic changes in these two vaccine vectors translate into antigen-specific systemic immune responses, we undertook a head-to-head vaccine immunogenicity and efficacy study in the pathogenic HIV type 1 (HIV-1) model of AIDS in Indian rhesus macaques. Differences in the immune responses in outbred animals were not distinguished by enzyme-linked immunospot assays, but differences were distinguished by multiparameter fluorescence-activated cell sorter analysis, revealing a difference between the number of animals with both CD4+ and CD8+ T-cell responses to vaccine inserts (MVA) and those that elicit a dominant CD4+ T-cell response (NYVAC). Remarkably, vector-induced differences in CD4+/CD8+ T-cell immune responses persisted for more than a year after challenge and even accompanied antigenic modulation throughout the control of chronic infection. Importantly, strong preexposure HIV-1/simian immunodeficiency virus-specific CD4+ T-cell responses did not prove deleterious with respect to accelerated disease progression. In contrast, in this setting, animals with strong vaccine-induced polyfunctional CD4+ T-cell responses showed efficacies similar to those with stronger CD8+ T-cell responses.


Journal of Virology | 2003

Prime-Boost Immunization Schedules Based on Influenza Virus and Vaccinia Virus Vectors Potentiate Cellular Immune Responses against Human Immunodeficiency Virus Env Protein Systemically and in the Genitorectal Draining Lymph Nodes

M. Magdalena Gherardi; José Luis Nájera; Eva Pérez-Jiménez; Susana Guerra; Adolfo García-Sastre; Mariano Esteban

ABSTRACT Vaccines that elicit systemic and mucosal immune responses should be the choice to control human immunodeficiency virus (HIV) infections. We have previously shown that prime-boost immunizations with influenza virus Env and vaccinia virus (VV) WR Env recombinants induced an enhanced systemic CD8+ T-cell response against HIV-1 Env antigen. In this report, we analyzed in BALB/c mice after priming with influenza virus Env the ability of two VV recombinants expressing HIV-1 Env B (VV WR Env and the highly attenuated modified VV Ankara [MVA] Env) to boost cellular immune responses in the spleen and in the lymph nodes draining the genital and rectal tracts. Groups of mice were primed by the intranasal route with 104 PFU of influenza virus Env and boosted 14 days later by the intraperitoneal or intranasal route with 107 PFU of MVA Env or VV WR Env, while the control group received two immunizations with influenza virus Env. We found that the combined immunization (Flu/VV) increased more than 60 times the number of gamma interferon-specific CD8+ T cells compared to the Flu/Flu scheme. Significantly, boosting with MVA Env by the intraperitoneal route induced a response 1.25 or 2.5 times (spleen or genital lymph nodes) higher with respect to that found after the boost with VV WR Env. Mice with an enhanced CD8+ T-cell response also had an increased Th1/Th2 ratio, evaluated by the cytokine pattern secreted following in vitro restimulation with gp160 protein and by the specific immunoglobulin G2a (IgG2a)/IgG1 ratio in serum. By the intranasal route recombinant WR Env booster gave a more efficient immune response (10 and 1.3 times in spleen and genital lymph nodes, respectively) than recombinant MVA Env. However, the scheme influenza virus Env/MVA Env increased four times the response in the spleen, giving a low but significant response in the genital lymph nodes compared with a single intranasal immunization with MVA Env. These results demonstrate that the combination Flu/MVA in prime-booster immunization regimens is an effective vaccination approach to generate cellular immune responses to HIV antigens at sites critical for protective responses.


Journal of Virology | 2006

Cellular and Biochemical Differences between Two Attenuated Poxvirus Vaccine Candidates (MVA and NYVAC) and Role of the C7L Gene

José Luis Nájera; Carmen Elena Gómez; Elena Domingo-Gil; Mariano Esteban

ABSTRACT The poxvirus strains NYVAC and MVA are two candidate vectors for the development of vaccines against a broad spectrum of diseases. Although these attenuated virus strains have proven to be safe in animals and humans, little is known about their comparative behavior in vitro. In contrast with MVA, NYVAC infection triggers greater cytopathic effect in a range of permissive and nonpermissive cell lines. The yields of NYVAC cell-associated virus in permissive cells (BHK-21) were slightly reduced compared with those of MVA infection. During the course of infection in HeLa cells, there is a translational block induced by NYVAC late in infection, which correlated with a marked increase in phosphorylation levels of the initiation factor eIF-2α. In contrast to MVA, the synthesis of certain late viral proteins was only blocked in NYVAC-infected HeLa cells. Electron microscopy (EM) analysis revealed that morphogenesis of NYVAC in HeLa cells was blocked at the stage of formation of immature viral forms. Phase-contrast microscopy, EM, flow cytometry, and rRNA analyses demonstrated that contrary to MVA, NYVAC infection induces potent apoptosis, a phenomenon dependent on activation of caspases and RNase L. Apoptosis induced by NYVAC was prevented when the virus gene C7L was placed back into the NYVAC genome, recovering the ability of NYVAC to replicate in HeLa cells and maintaining the attenuated phenotype in mice. Overall, our findings demonstrate distinct behavior between NYVAC and MVA strains in cultured cells, as well as a new role for the C7L viral gene as an inhibitor of apoptosis in NYVAC infection.


Journal of Immunology | 2004

Induction of HIV Immunity in the Genital Tract After Intranasal Delivery of a MVA Vector: Enhanced Immunogenicity After DNA Prime-Modified Vaccinia Virus Ankara Boost Immunization Schedule

M. Magdalena Gherardi; Eva Pérez-Jiménez; José Luis Nájera; Mariano Esteban

Vaccines intended to prevent mucosal transmission of HIV should be able to induce multiple immune effectors in the host including Abs and cell-mediated immune responses at mucosal sites. The aim of this study was to characterize and to enhance the immunogenicity of a recombinant modified vaccinia virus Ankara (MVA) expressing HIV-1 Env IIIB Ag (MVAenv) inoculated in BALB/c mice by mucosal routes. Intravaginal inoculation of MVAenv was not immunogenic, whereas intranasally it induced a significant immune response to the HIV Ag. Intranasal codelivery of MVAenv plus cholera toxin (CT) significantly enhanced the cellular and humoral immune response against Env in the spleen and genitorectal draining lymph nodes, respectively. Heterologous DNAenv prime-MVAenv boost by intranasal immunization, together with CT, produced a cellular immune response in the spleen 10-fold superior to that in the absence of CT. A key finding of these studies was that both MVAenv/MVAenv and DNAenv/MVAenv schemes, plus CT, induced a specific mucosal CD8+ T cell response in genital tissue and draining lymph nodes. In addition, both immunizations also generated systemic Abs, and more importantly, mucosal IgA and IgG Abs in vaginal washings. Specific secretion of β-chemokines was also generated by both immunizations, with a stronger response in mice immunized by the DNA-CT/MVA-CT regimen. Our findings are of relevance in the area of vaccine development and support the optimization of protocols of immunization based on MVA as vaccine vectors to induce mucosal immune responses against HIV.


PLOS ONE | 2011

A candidate HIV/AIDS vaccine (MVA-B) lacking vaccinia virus gene C6L enhances memory HIV-1-specific T-cell responses.

Juan García-Arriaza; José Luis Nájera; Carmen Elena Gómez; Nolawit Tewabe; Carlos Oscar S. Sorzano; Thierry Calandra; Thierry Roger; Mariano Esteban

The vaccinia virus (VACV) C6 protein has sequence similarities with the poxvirus family Pox_A46, involved in regulation of host immune responses, but its role is unknown. Here, we have characterized the C6 protein and its effects in virus replication, innate immune sensing and immunogenicity in vivo. C6 is a 18.2 kDa protein, which is expressed early during virus infection and localizes to the cytoplasm of infected cells. Deletion of the C6L gene from the poxvirus vector MVA-B expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (MVA-B ΔC6L) had no effect on virus growth kinetics; therefore C6 protein is not essential for virus replication. The innate immune signals elicited by MVA-B ΔC6L in human macrophages and monocyte-derived dendritic cells (moDCs) are characterized by the up-regulation of the expression of IFN-β and IFN-α/β-inducible genes. In a DNA prime/MVA boost immunization protocol in mice, flow cytometry analysis revealed that MVA-B ΔC6L enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4+ and CD8+ T-cell memory immune responses, with most of the HIV-1 responses mediated by the CD8+ T-cell compartment with an effector phenotype. Significantly, while MVA-B induced preferentially Env- and Gag-specific CD8+ T-cell responses, MVA-B ΔC6L induced more Gag-Pol-Nef-specific CD8+ T-cell responses. Furthermore, MVA-B ΔC6L enhanced the levels of antibodies against Env in comparison with MVA-B. These findings revealed that C6 can be considered as an immunomodulator and that deleting C6L gene in MVA-B confers an immunological benefit by enhancing IFN-β-dependent responses and increasing the magnitude and quality of the T-cell memory immune responses to HIV-1 antigens. Our observations are relevant for the improvement of MVA vectors as HIV-1 vaccines.


PLOS ONE | 2010

Immunogenic Profiling in Mice of a HIV/AIDS Vaccine Candidate (MVA-B) Expressing Four HIV-1 Antigens and Potentiation by Specific Gene Deletions

Juan García-Arriaza; José Luis Nájera; Carmen Elena Gómez; Carlos Oscar S. Sorzano; Mariano Esteban

Background The immune parameters of HIV/AIDS vaccine candidates that might be relevant in protection against HIV-1 infection are still undefined. The highly attenuated poxvirus strain MVA is one of the most promising vectors to be use as HIV-1 vaccine. We have previously described a recombinant MVA expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (referred as MVA-B), that induced HIV-1-specific immune responses in different animal models and gene signatures in human dendritic cells (DCs) with immunoregulatory function. Methodology/Principal Findings In an effort to characterize in more detail the immunogenic profile of MVA-B and to improve its immunogenicity we have generated a new vector lacking two genes (A41L and B16R), known to counteract host immune responses by blocking the action of CC-chemokines and of interleukin 1β, respectively (referred as MVA-B ΔA41L/ΔB16R). A DNA prime/MVA boost immunization protocol was used to compare the adaptive and memory HIV-1 specific immune responses induced in mice by the parental MVA-B and by the double deletion mutant MVA-B ΔA41L/ΔB16R. Flow cytometry analysis revealed that both vectors triggered HIV-1-specific CD4+ and CD8+ T cells, with the CD8+ T-cell compartment responsible for >91.9% of the total HIV-1 responses in both immunization groups. However, MVA-B ΔA41L/ΔB16R enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4+ and CD8+ T-cell immune responses. HIV-1-specific CD4+ T-cell responses were polyfunctional and preferentially Env-specific in both immunization groups. Significantly, while MVA-B induced preferentially Env-specific CD8+ T-cell responses, MVA-B ΔA41L/ΔB16R induced more GPN-specific CD8+ T-cell responses, with an enhanced polyfunctional pattern. Both vectors were capable of producing similar levels of antibodies against Env. Conclusions/Significance These findings revealed that MVA-B and MVA-B ΔA41L/ΔB16R induced in mice robust, polyfunctional and durable T-cell responses to HIV-1 antigens, but the double deletion mutant showed enhanced magnitude and quality of HIV-1 adaptive and memory responses. Our observations are relevant in the immune evaluation of MVA-B and on improvements of MVA vectors as HIV-1 vaccines.


Vaccine | 2011

Safety and immunogenicity of a modified pox vector-based HIV/AIDS vaccine candidate expressing Env, Gag, Pol and Nef proteins of HIV-1 subtype B (MVA-B) in healthy HIV-1-uninfected volunteers: A phase I clinical trial (RISVAC02).

Felipe García; Juan Carlos López Bernaldo de Quirós; Carmen Elena Gómez; Beatriz Perdiguero; José Luis Nájera; Victoria Jiménez; Juan García-Arriaza; Alberto C. Guardo; Iñaki Pérez; Vicens Díaz-Brito; Matilde Sánchez Conde; Nuria González; Amparo Álvarez; José Alcamí; Jose L. Jimenez; Judit Pich; Joan Albert Arnaiz; Maria J. Maleno; Agathe León; María Ángeles Muñoz-Fernández; Peter Liljeström; Jonathan Weber; Giuseppe Pantaleo; José M. Gatell; Montserrat Plana; Mariano Esteban

BACKGROUND To investigate the safety and immunogenicity of a modified vaccinia virus Ankara vector expressing HIV-1 antigens from clade B (MVA-B), a phase-I, doubled-blind placebo-controlled trial was performed. METHODS 30 HIV-uninfected volunteers at low risk of HIV-1 infection were randomly allocated to receive 3 intramuscular injections (1×10(8)pfu/dose) of MVA-B (n=24) or placebo (n=6) at weeks 0, 4 and 16. All volunteers were followed 48 weeks. Primary end-points were adverse events and immunogenicity. RESULTS A total of 169 adverse events were reported, 164 of grade 1-2, and 5 of grade 3 (none related to vaccination). Overall 75% of the volunteers showed positive ELISPOT responses at any time point. The magnitude (median) of the total responses induced was 288SFC/10(6)PBMC at week 18. Antibody responses against Env were observed in 95% and 72% of vaccinees at week 18 and 48, respectively. HIV-1 neutralizing antibodies were detected in 33% of volunteers. CONCLUSIONS MVA-B was safe, well tolerated and elicited strong and durable T-cell and antibody responses in 75% and 95% of volunteers, respectively. These data support further exploration of MVA-B as an HIV-1 vaccine candidate. Clinical Trials.gov identifier: NCT00679497.

Collaboration


Dive into the José Luis Nájera's collaboration.

Top Co-Authors

Avatar

Mariano Esteban

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Carmen Elena Gómez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Victoria Jiménez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Beatriz Perdiguero

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Carlos Oscar S. Sorzano

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Juan García-Arriaza

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Susana Guerra

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena Domingo-Gil

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge