Beatriz Pontes
University of Seville
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Beatriz Pontes.
Journal of Biomedical Informatics | 2015
Beatriz Pontes; Raúl Giráldez; Jesús S. Aguilar-Ruiz
Biclustering has become a popular technique for the study of gene expression data, especially for discovering functionally related gene sets under different subsets of experimental conditions. Most of biclustering approaches use a measure or cost function that determines the quality of biclusters. In such cases, the development of both a suitable heuristics and a good measure for guiding the search are essential for discovering interesting biclusters in an expression matrix. Nevertheless, not all existing biclustering approaches base their search on evaluation measures for biclusters. There exists a diverse set of biclustering tools that follow different strategies and algorithmic concepts which guide the search towards meaningful results. In this paper we present a extensive survey of biclustering approaches, classifying them into two categories according to whether or not use evaluation metrics within the search method: biclustering algorithms based on evaluation measures and non metric-based biclustering algorithms. In both cases, they have been classified according to the type of meta-heuristics which they are based on.
evolutionary computation machine learning and data mining in bioinformatics | 2007
Beatriz Pontes; Federico Divina; Raúl Giráldez; Jesús S. Aguilar-Ruiz
Many heuristics used for finding biclusters in microarray data use the mean squared residue as a way of evaluating the quality of biclusters. This has led to the discovery of interesting biclusters. Recently it has been proven that the mean squared residue may fail to identify some interesting biclusters. This motivates us to introduce a new measure, called Virtual Error, for assessing the quality of biclusters in microarray data. In order to test the validity of the proposed measure, we include it within an evolutionary algorithm. Experimental results show that the use of this novel measure is effective for finding interesting biclusters, which could not have been discovered with the use of the mean squared residue.
Algorithms for Molecular Biology | 2013
Beatriz Pontes; Raúl Giráldez; Jesús S. Aguilar-Ruiz
BackgroundBiclustering algorithms for microarray data aim at discovering functionally related gene sets under different subsets of experimental conditions. Due to the problem complexity and the characteristics of microarray datasets, heuristic searches are usually used instead of exhaustive algorithms. Also, the comparison among different techniques is still a challenge. The obtained results vary in relevant features such as the number of genes or conditions, which makes it difficult to carry out a fair comparison. Moreover, existing approaches do not allow the user to specify any preferences on these properties.ResultsHere, we present the first biclustering algorithm in which it is possible to particularize several biclusters features in terms of different objectives. This can be done by tuning the specified features in the algorithm or also by incorporating new objectives into the search. Furthermore, our approach bases the bicluster evaluation in the use of expression patterns, being able to recognize both shifting and scaling patterns either simultaneously or not. Evolutionary computation has been chosen as the search strategy, naming thus our proposal Evo-Bexpa (Evo lutionary B iclustering based in Ex pression Pa tterns).ConclusionsWe have conducted experiments on both synthetic and real datasets demonstrating Evo-Bexpa abilities to obtain meaningful biclusters. Synthetic experiments have been designed in order to compare Evo-Bexpa performance with other approaches when looking for perfect patterns. Experiments with four different real datasets also confirm the proper performing of our algorithm, whose results have been biologically validated through Gene Ontology.
Expert Systems With Applications | 2014
Fermín L. Cruz; José A. Troyano; Beatriz Pontes; F. Javier Ortega
Abstract Many tasks related to sentiment analysis rely on sentiment lexicons, lexical resources containing information about the emotional implications of words (e.g., sentiment orientation of words, positive or negative). In this work, we present an automatic method for building lemma-level sentiment lexicons, which has been applied to obtain lexicons for English, Spanish and other three official languages in Spain. Our lexicons are multi-layered, allowing applications to trade off between the amount of available words and the accuracy of the estimations. Our evaluations show high accuracy values in all cases. As a previous step to the lemma-level lexicons, we have built a synset-level lexicon for English similar to S enti W ord N et 3.0, one of the most used sentiment lexicons nowadays. We have made several improvements in the original S enti W ord N et 3.0 building method, reflecting significantly better estimations of positivity and negativity, according to our evaluations. The resource containing all the lexicons, ML-S enti C on , is publicly available.
Computers in Biology and Medicine | 2012
Federico Divina; Beatriz Pontes; Raúl Giráldez; Jesús S. Aguilar-Ruiz
Biclustering is becoming a popular technique for the study of gene expression data. This is mainly due to the capability of biclustering to address the data using various dimensions simultaneously, as opposed to clustering, which can use only one dimension at the time. Different heuristics have been proposed in order to discover interesting biclusters in data. Such heuristics have one common characteristic: they are guided by a measure that determines the quality of biclusters. It follows that defining such a measure is probably the most important aspect. One of the popular quality measure is the mean squared residue (MSR). However, it has been proven that MSR fails at identifying some kind of patterns. This motivates us to introduce a novel measure, called virtual error (VE), that overcomes this limitation. Results obtained by using VE confirm that it can identify interesting patterns that could not be found by MSR.
PLOS ONE | 2015
Beatriz Pontes; Ral Girldez; Jess S. Aguilar-Ruiz
An noticeable number of biclustering approaches have been proposed proposed for the study of gene expression data, especially for discovering functionally related gene sets under different subsets of experimental conditions. In this context, recognizing groups of co-expressed or co-regulated genes, that is, genes which follow a similar expression pattern, is one of the main objectives. Due to the problem complexity, heuristic searches are usually used instead of exhaustive algorithms. Furthermore, most of biclustering approaches use a measure or cost function that determines the quality of biclusters. Having a suitable quality metric for bicluster is a critical aspect, not only for guiding the search, but also for establishing a comparison criteria among the results obtained by different biclustering techniques. In this paper, we analyse a large number of existing approaches to quality measures for gene expression biclusters, as well as we present a comparative study of them based on their capability to recognize different expression patterns in biclusters.
International Journal of Intelligent Computing and Cybernetics | 2009
Beatriz Pontes; Federico Divina; Raúl Giráldez; Jesús S. Aguilar-Ruiz
– The purpose of this paper is to present a novel control mechanism for avoiding overlapping among biclusters in expression data., – Biclustering is a technique used in analysis of microarray data. One of the most popular biclustering algorithms is introduced by Cheng and Church (2000) (Ch&Ch). Even if this heuristic is successful at finding interesting biclusters, it presents several drawbacks. The main shortcoming is that it introduces random values in the expression matrix to control the overlapping. The overlapping control method presented in this paper is based on a matrix of weights, that is used to estimate the overlapping of a bicluster with already found ones. In this way, the algorithm is always working on real data and so the biclusters it discovers contain only original data., – The paper shows that the original algorithm wrongly estimates the quality of the biclusters after some iterations, due to random values that it introduces. The empirical results show that the proposed approach is effective in order to improve the heuristic. It is also important to highlight that many interesting biclusters found by using our approach would have not been obtained using the original algorithm., – The original algorithm proposed by Ch&Ch is one of the most successful algorithms for discovering biclusters in microarray data. However, it presents some limitations, the most relevant being the substitution phase adopted in order to avoid overlapping among biclusters. The modified version of the algorithm proposed in this paper improves the original one, as proven in the experimentation.
pattern recognition in bioinformatics | 2010
Beatriz Pontes; Raúl Giráldez; Jesús S. Aguilar-Ruiz
The most widespread biclustering algorithms use the Mean Squared Residue (MSR) as measure for assessing the quality of biclusters. MSR can identify correctly shifting patterns, but fails at discovering biclusters presenting scaling patterns. Virtual Error (VE) is a measure which improves the performance of MSR in this sense, since it is effective at recognizing biclusters containing shifting patters or scaling patterns as quality biclusters. However, VE presents some drawbacks when the biclusters present both kind of patterns simultaneously. In this paper, we propose a improvement of VE that can be integrated in any heuristic to discover biclusters with shifting and scaling patterns simultaneously.
ieee international conference on fuzzy systems | 2007
Raúl Giráldez; Federico Divina; Beatriz Pontes; Jesús S. Aguilar-Ruiz
Biclustering techniques aim at extracting significant subsets of genes and conditions from microarray gene expression data. This kind of algorithms is mainly based on two key aspects: the way in which they deal with gene similarity across the experimental conditions, that determines the quality of biclusters; and the heuristic or search strategy used for exploring the search space. A measure that is often adopted for establishing the quality of biclusters is the mean squared residue. This measure has been successfully used in many approaches. However, it has been recently proven that the mean squared residue fails to recognize some kind of biclusters as quality biclusters, mainly due to the difficulty of detecting scaling patterns in data. In this work, we propose a novel measure for trying to overcome this drawback. This measure is based on the area between two curves. Such curves are built from the maximum and minimum standardized expression values exhibited for each experimental condition. In order to test the proposed measure, we have incorporated it into a multiobjective evolutionary algorithm. Experimental results confirm the effectiveness of our approach. The combination of the measure we propose with the mean squared residue yields results that would not have been obtained if only the mean squared residue had been used.
international symposium on bioinformatics research and applications | 2011
Pavol Jancura; Eleftheria Mavridou; Beatriz Pontes; Elena Marchiori
In recent work, stable evolutionary signal induced by orthologous proteins has been observed in a Yeast protein-protein interaction (PPI) network. This finding suggests more connected subgraphs of a PPI network to be potential mediators of evolutionary information. Because protein complexes are also likely to be present in such subgraphs, it is interesting to characterize the bias of the orthology signal on the detection of putative protein complexes. To this aim, we propose a novel methodology for quantifying the functionality of the orthology signal in a PPI network at a protein complex level. The methodology performs a differential analysis between the functions of those complexes detected by clustering a PPI network using only proteins with orthologs in another given species, and the functions of complexes detected using the entire network or sub-networks generated by random sampling of proteins. We applied the proposed methodology to a Yeast PPI network using orthology information from a number of different organisms. The results indicated that the proposed method is capable to isolate functional categories that can be clearly attributed to the presence of an evolutionary (orthology) signal and quantify their distribution at a finegrained protein level.