Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raúl Giráldez is active.

Publication


Featured researches published by Raúl Giráldez.


Journal of Biomedical Informatics | 2015

Biclustering on expression data

Beatriz Pontes; Raúl Giráldez; Jesús S. Aguilar-Ruiz

Biclustering has become a popular technique for the study of gene expression data, especially for discovering functionally related gene sets under different subsets of experimental conditions. Most of biclustering approaches use a measure or cost function that determines the quality of biclusters. In such cases, the development of both a suitable heuristics and a good measure for guiding the search are essential for discovering interesting biclusters in an expression matrix. Nevertheless, not all existing biclustering approaches base their search on evaluation measures for biclusters. There exists a diverse set of biclustering tools that follow different strategies and algorithmic concepts which guide the search towards meaningful results. In this paper we present a extensive survey of biclustering approaches, classifying them into two categories according to whether or not use evaluation metrics within the search method: biclustering algorithms based on evaluation measures and non metric-based biclustering algorithms. In both cases, they have been classified according to the type of meta-heuristics which they are based on.


systems man and cybernetics | 2005

Knowledge-based fast evaluation for evolutionary learning

Raúl Giráldez; Jesús S. Aguilar-Ruiz; José C. Riquelme

The increasing amount of information available is encouraging the search for efficient techniques to improve the data mining methods, especially those which consume great computational resources, such as evolutionary computation. Efficacy and efficiency are two critical aspects for knowledge-based techniques. The incorporation of knowledge into evolutionary algorithms (EAs) should provide either better solutions (efficacy) or the equivalent solutions in shorter time (efficiency), regarding the same evolutionary algorithm without incorporating such knowledge. In this paper, we categorize and summarize some of the incorporation of knowledge techniques for evolutionary algorithms and present a novel data structure, called efficient evaluation structure (EES), which helps the evolutionary algorithm to provide decision rules using less computational resources. The EES-based EA is tested and compared to another EA system and the experimental results show the quality of our approach, reducing the computational cost about 50%, maintaining the global accuracy of the final set of decision rules.


evolutionary computation machine learning and data mining in bioinformatics | 2007

Virtual error: a new measure for evolutionary biclustering

Beatriz Pontes; Federico Divina; Raúl Giráldez; Jesús S. Aguilar-Ruiz

Many heuristics used for finding biclusters in microarray data use the mean squared residue as a way of evaluating the quality of biclusters. This has led to the discovery of interesting biclusters. Recently it has been proven that the mean squared residue may fail to identify some interesting biclusters. This motivates us to introduce a new measure, called Virtual Error, for assessing the quality of biclusters in microarray data. In order to test the validity of the proposed measure, we include it within an evolutionary algorithm. Experimental results show that the use of this novel measure is effective for finding interesting biclusters, which could not have been discovered with the use of the mean squared residue.


Algorithms for Molecular Biology | 2013

Configurable pattern-based evolutionary biclustering of gene expression data

Beatriz Pontes; Raúl Giráldez; Jesús S. Aguilar-Ruiz

BackgroundBiclustering algorithms for microarray data aim at discovering functionally related gene sets under different subsets of experimental conditions. Due to the problem complexity and the characteristics of microarray datasets, heuristic searches are usually used instead of exhaustive algorithms. Also, the comparison among different techniques is still a challenge. The obtained results vary in relevant features such as the number of genes or conditions, which makes it difficult to carry out a fair comparison. Moreover, existing approaches do not allow the user to specify any preferences on these properties.ResultsHere, we present the first biclustering algorithm in which it is possible to particularize several biclusters features in terms of different objectives. This can be done by tuning the specified features in the algorithm or also by incorporating new objectives into the search. Furthermore, our approach bases the bicluster evaluation in the use of expression patterns, being able to recognize both shifting and scaling patterns either simultaneously or not. Evolutionary computation has been chosen as the search strategy, naming thus our proposal Evo-Bexpa (Evo lutionary B iclustering based in Ex pression Pa tterns).ConclusionsWe have conducted experiments on both synthetic and real datasets demonstrating Evo-Bexpa abilities to obtain meaningful biclusters. Synthetic experiments have been designed in order to compare Evo-Bexpa performance with other approaches when looking for perfect patterns. Experiments with four different real datasets also confirm the proper performing of our algorithm, whose results have been biologically validated through Gene Ontology.


Computers in Biology and Medicine | 2012

An effective measure for assessing the quality of biclusters

Federico Divina; Beatriz Pontes; Raúl Giráldez; Jesús S. Aguilar-Ruiz

Biclustering is becoming a popular technique for the study of gene expression data. This is mainly due to the capability of biclustering to address the data using various dimensions simultaneously, as opposed to clustering, which can use only one dimension at the time. Different heuristics have been proposed in order to discover interesting biclusters in data. Such heuristics have one common characteristic: they are guided by a measure that determines the quality of biclusters. It follows that defining such a measure is probably the most important aspect. One of the popular quality measure is the mean squared residue (MSR). However, it has been proven that MSR fails at identifying some kind of patterns. This motivates us to introduce a novel measure, called virtual error (VE), that overcomes this limitation. Results obtained by using VE confirm that it can identify interesting patterns that could not be found by MSR.


International Journal of Intelligent Computing and Cybernetics | 2009

Improved biclustering on expression data through overlapping control

Beatriz Pontes; Federico Divina; Raúl Giráldez; Jesús S. Aguilar-Ruiz

– The purpose of this paper is to present a novel control mechanism for avoiding overlapping among biclusters in expression data., – Biclustering is a technique used in analysis of microarray data. One of the most popular biclustering algorithms is introduced by Cheng and Church (2000) (Ch&Ch). Even if this heuristic is successful at finding interesting biclusters, it presents several drawbacks. The main shortcoming is that it introduces random values in the expression matrix to control the overlapping. The overlapping control method presented in this paper is based on a matrix of weights, that is used to estimate the overlapping of a bicluster with already found ones. In this way, the algorithm is always working on real data and so the biclusters it discovers contain only original data., – The paper shows that the original algorithm wrongly estimates the quality of the biclusters after some iterations, due to random values that it introduces. The empirical results show that the proposed approach is effective in order to improve the heuristic. It is also important to highlight that many interesting biclusters found by using our approach would have not been obtained using the original algorithm., – The original algorithm proposed by Ch&Ch is one of the most successful algorithms for discovering biclusters in microarray data. However, it presents some limitations, the most relevant being the substitution phase adopted in order to avoid overlapping among biclusters. The modified version of the algorithm proposed in this paper improves the original one, as proven in the experimentation.


pattern recognition in bioinformatics | 2010

Measuring the quality of shifting and scaling patterns in biclusters

Beatriz Pontes; Raúl Giráldez; Jesús S. Aguilar-Ruiz

The most widespread biclustering algorithms use the Mean Squared Residue (MSR) as measure for assessing the quality of biclusters. MSR can identify correctly shifting patterns, but fails at discovering biclusters presenting scaling patterns. Virtual Error (VE) is a measure which improves the performance of MSR in this sense, since it is effective at recognizing biclusters containing shifting patters or scaling patterns as quality biclusters. However, VE presents some drawbacks when the biclusters present both kind of patterns simultaneously. In this paper, we propose a improvement of VE that can be integrated in any heuristic to discover biclusters with shifting and scaling patterns simultaneously.


industrial and engineering applications of artificial intelligence and expert systems | 2001

SNN: A Supervised Clustering Algorithm

Jesús S. Aguilar-Ruiz; Roberto Ruiz; José Cristóbal Riquelme Santos; Raúl Giráldez

In this paper, we present a new algorithm based on the nearest neighbours method, for discovering groups and identifying interesting distributions in the underlying data in the labelled databases. We introduces the theory of nearest neighbours sets in order to base the algorithm S-NN (Similar Nearest Neighbours). Traditional clustering algorithms are very sensitive to the user-defined parameters and an expert knowledge is required to choose the values. Frequently, these algorithms are fragile in the presence of outliers and any adjust well to spherical shapes. Experiments have shown that S-NN is accurate discovering arbitrary shapes and density clusters, since it takes into account the internal features of each cluster, and it does not depend on a user-supplied static model. S-NN achieve this by collecting the nearest neighbours with the same label until the enemy is found (it has not the same label). The determinism and the results offered to the researcher turn it into a valuable tool for the representation of the inherent knowledge to the labelled databases.


ieee international conference on fuzzy systems | 2007

Evolutionary Search of Biclusters by Minimal Intrafluctuation

Raúl Giráldez; Federico Divina; Beatriz Pontes; Jesús S. Aguilar-Ruiz

Biclustering techniques aim at extracting significant subsets of genes and conditions from microarray gene expression data. This kind of algorithms is mainly based on two key aspects: the way in which they deal with gene similarity across the experimental conditions, that determines the quality of biclusters; and the heuristic or search strategy used for exploring the search space. A measure that is often adopted for establishing the quality of biclusters is the mean squared residue. This measure has been successfully used in many approaches. However, it has been recently proven that the mean squared residue fails to recognize some kind of biclusters as quality biclusters, mainly due to the difficulty of detecting scaling patterns in data. In this work, we propose a novel measure for trying to overcome this drawback. This measure is based on the area between two curves. Such curves are built from the maximum and minimum standardized expression values exhibited for each experimental condition. In order to test the proposed measure, we have incorporated it into a multiobjective evolutionary algorithm. Experimental results confirm the effectiveness of our approach. The combination of the measure we propose with the mean squared residue yields results that would not have been obtained if only the mean squared residue had been used.


intelligent systems design and applications | 2011

Evolutionary biclustering based on expression patterns

Beatriz Pontes; Raúl Giráldez; Jesús S. Aguilar-Ruiz

The majority of the biclustering approaches for microarray data analysis use the Mean Squared Residue (MSR) as the main evaluation measure for guiding the heuristic. MSR has been proven to be inefficient to recognize several kind of interesting patterns for biclusters. Transposed Virtual Error (VEt) has recently been discovered to overcome MSR drawbacks, being able to recognize shifting and/or scaling patterns. In this work we propose a parallel evolutionary biclustering algorithm which uses VEt as the main part of the fitness function, which has been designed using the volume and overlapping as other objectives to optimize. The resulting algorithm has been tested on both synthetic and benchmark real data producing satisfactory results. These results has been compared to those of the most popular biclustering algorithm developed by Cheng and Church and based in the use of MSR.

Collaboration


Dive into the Raúl Giráldez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Federico Divina

Pablo de Olavide University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberto Ruiz

Pablo de Olavide University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alicia Troncoso

Pablo de Olavide University

View shared research outputs
Researchain Logo
Decentralizing Knowledge