Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bechan Sharma is active.

Publication


Featured researches published by Bechan Sharma.


Environmental Monitoring and Assessment | 2009

Analysis of some heavy metals in the riverine water, sediments and fish from river Ganges at Allahabad.

Aradhna Gupta; Ravi S. Pandey; Bechan Sharma

The river Ganges has been one of the major recipients of industrial effluents in India. The present paper deals with the study related to occurrence and bioaccumulation of heavy metals (Cu, Cr, Cd, Pb, Zn) in the riverine water, sediment, and the muscles of two cat fish species, Channa punctatus (C. punctatus) and Aorichthys aor (A. aor) procured from the river Ganges at Allahabad. The data obtained after water analysis reflected the order of occurrence of heavy metals to be Zn > Pb > Cu > Cr > Cd, respectively. The analysis of heavy metals in sediment indicated that among the five heavy metals tested; Zn was maximally accumulated followed by Pb, Cr, Cu and Cd. The trend of heavy metals accumulation in fish muscles was found to be similar to that observed in sediment and water such as Zn > Pb > Cu > Cr > Cd. Data indicated that Zn accumulated maximally in the sediment as well as muscles of both of the fish species in comparison to other metals.


BioMed Research International | 2014

Biomedical Implications of Heavy Metals Induced Imbalances in Redox Systems

Bechan Sharma; Shweta Singh; Nikhat J. Siddiqi

Several workers have extensively worked out the metal induced toxicity and have reported the toxic and carcinogenic effects of metals in human and animals. It is well known that these metals play a crucial role in facilitating normal biological functions of cells as well. One of the major mechanisms associated with heavy metal toxicity has been attributed to generation of reactive oxygen and nitrogen species, which develops imbalance between the prooxidant elements and the antioxidants (reducing elements) in the body. In this process, a shift to the former is termed as oxidative stress. The oxidative stress mediated toxicity of heavy metals involves damage primarily to liver (hepatotoxicity), central nervous system (neurotoxicity), DNA (genotoxicity), and kidney (nephrotoxicity) in animals and humans. Heavy metals are reported to impact signaling cascade and associated factors leading to apoptosis. The present review illustrates an account of the current knowledge about the effects of heavy metals (mainly arsenic, lead, mercury, and cadmium) induced oxidative stress as well as the possible remedies of metal(s) toxicity through natural/synthetic antioxidants, which may render their effects by reducing the concentration of toxic metal(s). This paper primarily concerns the clinicopathological and biomedical implications of heavy metals induced oxidative stress and their toxicity management in mammals.


Annals of Clinical Microbiology and Antimicrobials | 2009

Inhibitory activity of Indian spice plant Cinnamomum zeylanicum extracts against Alternaria solani and Curvularia lunata, the pathogenic dematiaceous moulds

Ajay Kumar Mishra; Amita Mishra; Hk Kehri; Bechan Sharma; Abhay K. Pandey

BackgroundDematiaceous moulds are pathogenic microorganisms and act as etiological agents of mycoses with different degrees of severity in humans and animals. These moulds also cause loss of food crops and storage food products. The information regarding antimicrobial efficacy of the plant preparations on these moulds is scanty. The present study reveals phytochemical characterization and the effect of bark and leaf extracts of Indian spice plant, Cinnamomum zeylanicum (Cz), against the growth of two species of dematiaceous moulds, Alternaria solani and Curvularia lunata.MethodsCz bark and leaf samples were sequentially extracted in different solvents using Soxhlet apparatus. Phytochemical analyses of extracts were done as per standard protocols. The antifungal bioassay of extracts was done by hanging drop technique. The inhibition of fungal spore germination was monitored under influence of three different concentrations of extracts.ResultsThe lowest test concentration (50 μg/ml) of extracts of Cz bark prepared into acetone and that of Cz leaf into petroleum ether and ethanol exhibited complete inhibition (100%) of spore germination in both the moulds. At 100 μg/ml concentration all the extracts showed about 50 to 100% inhibition. However, the treatment of the spores of the two fungal species with highest concentration (500 μg/ml) of bark and leaf extracts in all the solvents showed 100% fungicidal activity as it completely arrested the germination of spores. Relatively lower activity of aqueous extracts at 50 and 100 μg/ml concentrations suggests that the antifungal ingredients present in Cz bark and leaf are more soluble in organic solvents than water.ConclusionThe results demonstrated that the Cz bark and leaves contain certain fungicidal constituents exhibiting potential antimould activity against A. solani and C. lunata.


Experimental and Toxicologic Pathology | 2009

Carbofuran-induced toxicity in rats: Protective role of vitamin C

Prashant Kumar Rai; Syed Ibrahim Rizvi; Geeta Watal; Bechan Sharma

Erythrocytes are prone to oxidative stress due to the presence of hemoglobin and polyunsaturated fatty acids. Oxidative stress (OS) is associated with increased osmotic fragility (OF) of erythrocytes. Organophosphate and organocarbamate pesticides are known to cause OS in erythrocytes. We have investigated the effect of a single sub-acute dose of carbofuran (CF), an organocarbamate pesticide and ameliorating role of vitamin C on OF and OS in erythrocytes of Wistar rats. OF and OS were assessed by determining membrane stability in terms of erythrocyte OF and the activities of free radicals scavenging enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST). We observed a significant alteration in the mean erythrocyte fragility (MEF) at relatively higher NaCl concentration (0.67%) as compared to MEF at 0.55%, 0.58% and 0.56% of NaCl in control, vitamin C- and vitamin C + CF-treated groups, respectively. The activities of CAT and SOD were observed to be elevated by 74.35% and 85.56%, respectively, with significance level of p < or = 0.001, whereas GST activity got significantly (p < or = 0.001) diminished by 46.30% in the erythrocytes of CF-treated rats. Vitamin C treatment exhibited marked (p < or = 0.05) prevention of carbofuran-induced oxidative stress as well as erythrocyte osmotic fragility in the Wistar rats. These results suggest that CF treatment induces OF and OS in the erythrocytes of rats, and pretreatment with vitamin C can mitigate these toxic effects.


Journal of Biological Chemistry | 2012

Biochemical Mechanism of HIV-1 Resistance to Rilpivirine

Kamalendra Singh; Bruno Marchand; Devendra K. Rai; Bechan Sharma; Eleftherios Michailidis; Emily M. Ryan; Kayla B. Matzek; Maxwell D. Leslie; Ariel N. Hagedorn; Zhe Li; Pieter R. Norden; Atsuko Hachiya; Michael A. Parniak; Hong Tao Xu; Mark A. Wainberg; Stefan G. Sarafianos

Background: Reverse transcriptase mutations E138K and M184I emerged most frequently in HIV-1 patients who failed rilpivirine/emtricitabine/tenofovir combination therapy. Results: M184I reduces polymerase efficiency, and E138K restores it. E138K also reduces rilpivirine binding affinity mainly by increasing its dissociation rate. Conclusion: E138K abrogates the polymerase defect of M184I and increases rilpivirine dissociation. Significance: Our results provide a biochemical explanation for the selection of E138K/M184I in patients who failed combination therapy. Rilpivirine (RPV) is a second generation nonnucleoside reverse transcriptase (RT) inhibitor (NNRTI) that efficiently inhibits HIV-1 resistant to first generation NNRTIs. Virological failure during therapy with RPV and emtricitabine is associated with the appearance of E138K and M184I mutations in RT. Here we investigate the biochemical mechanism of RT inhibition and resistance to RPV. We used two transient kinetics approaches (quench-flow and stopped-flow) to determine how subunit-specific mutations in RT p66 or p51 affect association and dissociation of RPV to RT as well as their impact on binding of dNTP and DNA and the catalytic incorporation of nucleotide. We compared WT with four subunit-specific RT mutants, p66M184I/p51WT, p66E138K/p51E138K, p66E138K/M184I/p51E138K, and p66M184I/p51E138K. Ile-184 in p66 (p66184I) decreased the catalytic efficiency of RT (kpol/Kd.dNTP), primarily through a decrease in dNTP binding (Kd.dNTP). Lys-138 either in both subunits or in p51 alone abrogated the negative effect of p66184I by restoring dNTP binding. Furthermore, p51138K reduced RPV susceptibility by altering the ratio of RPV dissociation to RPV association, resulting in a net reduction in RPV equilibrium binding affinity (Kd.RPV = koff.RPV/kon.RPV). Quantum mechanics/molecular mechanics hybrid molecular modeling revealed that p51E138K affects access to the RPV binding site by disrupting the salt bridge between p51E138 and p66K101. p66184I caused repositioning of the Tyr-183 active site residue and decreased the efficiency of RT, whereas the addition of p51138K restored Tyr-183 to a WT-like conformation, thus abrogating the Ile-184-induced functional defects.


Asian Pacific Journal of Tropical Medicine | 2013

Role of Moringa oleifera in regulation of diabetes-induced oxidative stress

Dolly Jaiswal; Prashant Kumar Rai; Shikha Mehta; Sanjukta Chatterji; Surekha Shukla; Devendra K. Rai; Gaurav Sharma; Bechan Sharma; Shahidul khair; Geeta Watal

OBJECTIVE To evaluate the antioxidant activity of aqueous extract of Moringa oleifera (M. oleifera) young leaves by in vivo as well as in vitro assays. METHODS In vitro study included estimation of total phenolic, total flavonol, total flavonoid and total antioxidant power (FRAP assay). In addition, in vivo study was done with the identified most effective dose of 200 mg/kg of its lyophilized powder on normal and diabetic rats. Its effect on different oxidative free radical scavenging enzymes,viz, superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), lipid peroxide (LPO) contents were measured. RESULTS Significant increase in activities of SOD, CAT, GST while, a decrease in LPO content was observed. Whereas, total phenolic, flavonoid and flavonol contents in the extract were found to be 120 mg/g of GAE, 40.5 mg/g of QE and 12.12 mg/g of QE, respectively. On the other hand, FRAP assay results of M. oleifera leaves was (85.00 ± 5.00) μM/g of extract powder. CONCLUSIONS The significant antioxidant activities of M. oleifera leaves from both in vivo as well as in vitro studies suggests that the regular intake of its leaves through diet can protect normal as well as diabetic patients against oxidative damage.


Cellular and Molecular Biology | 2011

Role of aqueous extract of Cynodon dactylon in prevention of carbofuran- induced oxidative stress and acetylcholinesterase inhibition in rat brain

R. K. Sharma; Prashant Kumar Rai; Geeta Watal; Bechan Sharma

The present study was designed to investigate the ameliorating effect of aqueous extract of C. dactylon on carbofuran induced oxidative stress (OS) and alterations in the activity of acetylcholinesterase (AChE) in the brain of rats. Vitamin C was used as a positive control. Wistar rats were administered with single sub-acute oral dose (1.6 mgkg-1 b.wt.) of carbofuran for 24 h. The OS parameters such as lipid peroxidation (LPO) and the activities of antioxidant enzymes including super oxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST), and that of AChE were studied in brain. Carbofuran treatment significantly increased the activities of SOD and CAT by 75 and 60%, respectively. It also induced the level of LPO by 113%. In contrast, the activities of GST and AChE were recorded to be diminished by 25 and 33%, respectively. Pretreatment of the rats with aqueous extract of C. dactylon (oral; 500mgkg-1) restored SOD activity completely but CAT activity only partially (7%). Carbofuran induced LPO was moderated by 95% in the brain of C. dactylon treated rats. The observed changes in OS parameters in C. dactylon treated group were comparable to that observed in vitamin C (200 mg-kg-1 b. wt.) treated group. Surprisingly, C. dactylon treatment significantly recovered the activity of AChE to a similar level as observed in the brain of control group. In contrast vitamin C treatment did not cause significant change in the activity of AChE in carbofuran treated group. There were no noticeable changes in the aforementioned study parameters in the brain of rats receiving C. dactylon and vitamin C, only. The results suggest that the study is extremely important in the context of development of new anticholinestesterase and antioxidant antidotes against carbofuran from C. dactylon.


Indian Journal of Clinical Biochemistry | 2008

Effect of water extract of Trichosanthes dioica fruits in streptozotocin induced diabetic rats.

Prashant Kumar Rai; Dolly Jaiswal; Bechan Sharma; Geeta Watal

In rats with streptozotocin induced severe diabetes mellitus, aqueous extract of Trichosanthes dioica fruits at a dose of 1000mg/kg body weight daily once for 28 days reduced the levels of fasting blood glucose, postprandial glucose, asparate amino transferase, alanine amino transferase, alkaline phosphatase, creatinine, urine sugar and urine protein where as total protein and body weight was increased. No toxic effect was observed during LD50. Our study suggests that further detailed toxicity studies and mechanism of action of T. dioica would be useful for undertaking human trials.


Cellular and Molecular Biology | 2012

In-vitro carbofuran induced micronucleus formation in human blood lymphocytes.

R. K. Sharma; D. K. Rai; Bechan Sharma

The farmers in general get exposed to different chemicals including pesticides. Many of these compounds are capable of inducing mutations in DNA and lead to several diseases including cancer. Carbofuran is a broad spectrum pesticide and frequently used in agricultural practices in India. In this study we intended to evaluate DNA damage inflicted by pesticide exposure in human blood lymphocytes under in vitro condition. The lymphocytes were exposed to varying concentrations of carbofuran (0—50μM) and analyzed by means of the micronucleus (MN) test. The results obtained showed significant increase in MN frequency after exposure to 5, 10, 25 and 50μM of carbofuran as compared to the control group. The frequencies of MN were observed to be in concentration dependent manner. As we further increase the concentration of carbofuran, we observed significant decrease in the mean percentage of binucleated cells (70—49%) and increase in the number of micronuclei formed per 1000 binucleated cells. Simultaneously, we also observed reduction in Cytokinesis—Block Proliferation index (CBPI) with increase in the carbofuran concentrations. The results indicate that this pesticide may exhibit genotoxic effect at higher concentrations. This study emphasizes the need to reinforce the good practices campaigns in order to enlighten those who work with pesticides and also to make them aware about the importance of using protective measures.


Indian Journal of Clinical Biochemistry | 2010

Effect of Curcuma longa freeze dried rhizome powder with milk in STZ induced diabetic rats

Prashant Kumar Rai; Dolly Jaiswal; Shikha Mehta; Bechan Sharma; Geeta Watal

This study deals with the effects of freeze dried rhizome powder of Curcuma longa (C. longa) dissolved in milk on normal as well as diabetic models. Diabetes of type II and type I was within 3 days of a single administration of doses of 45 and 65 mg kg−1 of streptozotocin respectively. Various parameters such as blood glucose levels, triglycerides, total cholesterol, high density lipoprotein, very low density lipoprotein, low density lipoprotein, serum glutamic oxaloacetic transaminase, serum glutamic pyruvate transaminase, alkaline phosphatase, creatinine, hemoglobin, urine protein and urine sugar in addition to body weight were taken in to consideration and were analyzed after administration of variable doses of rhizome powder. The dose of 200 mg kg−1 was identified as the most effective dose as it increased HDL, Hb and bw (P<0.05) with significant decrease in the levels of blood glucose, lipid profile and hepatoprotective enzymes (P<0.001).

Collaboration


Dive into the Bechan Sharma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge