Behnaz Ahangarian Abhari
Goethe University Frankfurt
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Behnaz Ahangarian Abhari.
Molecular Cancer Therapeutics | 2013
Christian Gieffers; Michael Kluge; Christian Merz; Jaromir Sykora; Meinolf Thiemann; René Schaal; Carmen Fischer; Marcus Branschädel; Behnaz Ahangarian Abhari; Peter Hohenberger; Simone Fulda; Harald Fricke; Oliver Hill
Cancer cells can be specifically driven into apoptosis by activating Death-receptor-4 (DR4; TRAIL-R1) and/or Death-receptor-5 (DR5; TRAIL-R2). Albeit showing promising preclinical efficacy, first-generation protein therapeutics addressing this pathway, especially agonistic anti-DR4/DR5-monoclonal antibodies, have not been clinically successful to date. Due to their bivalent binding mode, effective apoptosis induction by agonistic TRAIL-R antibodies is achieved only upon additional events leading to antibody-multimer formation. The binding of these multimers to their target subsequently leads to effective receptor-clustering on cancer cells. The research results presented here report on a new class of TRAIL-receptor agonists overcoming this intrinsic limitation observed for antibodies in general. The main feature of these agonists is a TRAIL-mimic consisting of three TRAIL-protomer subsequences combined in one polypeptide chain, termed the single-chain TRAIL-receptor–binding domain (scTRAIL-RBD). In the active compounds, two scTRAIL-RBDs with three receptor binding sites each are brought molecularly in close proximity resulting in a fusion protein with a hexavalent binding mode. In the case of APG350—the prototype of this engineering concept—this is achieved by fusing the Fc-part of a human immunoglobulin G1 (IgG1)-mutein C-terminally to the scTRAIL–RBD polypeptide, thereby creating six receptor binding sites per drug molecule. In vitro, APG350 is a potent inducer of apoptosis on human tumor cell lines and primary tumor cells. In vivo, treatment of mice bearing Colo205-xenograft tumors with APG350 showed a dose-dependent antitumor efficacy. By dedicated muteins, we confirmed that the observed in vivo efficacy of the hexavalent scTRAIL–RBD fusion proteins is—in contrast to agonistic antibodies—independent of FcγR-based cross-linking events. Mol Cancer Ther; 12(12); 2735–47. ©2013 AACR.
Scientific Reports | 2015
Martin Michaelis; Bishr Agha; Florian Rothweiler; Nadine Löschmann; Yvonne Voges; Michel Mittelbronn; Tatjana Starzetz; Patrick N. Harter; Behnaz Ahangarian Abhari; Simone Fulda; Frank Westermann; Kristoffer Riecken; Silvia Spek; Klaus Langer; Michael Wiese; Wilhelm G. Dirks; Richard Zehner; Jaroslav Cinatl; Mark N. Wass; Jindrich Cinatl
Flubendazole was shown to exert anti-leukaemia and anti-myeloma activity through inhibition of microtubule function. Here, flubendazole was tested for its effects on the viability of in total 461 cancer cell lines. Neuroblastoma was identified as highly flubendazole-sensitive cancer entity in a screen of 321 cell lines from 26 cancer entities. Flubendazole also reduced the viability of five primary neuroblastoma samples in nanomolar concentrations thought to be achievable in humans and inhibited vessel formation and neuroblastoma tumour growth in the chick chorioallantoic membrane assay. Resistance acquisition is a major problem in high-risk neuroblastoma. 119 cell lines from a panel of 140 neuroblastoma cell lines with acquired resistance to various anti-cancer drugs were sensitive to flubendazole in nanomolar concentrations. Tubulin-binding agent-resistant cell lines displayed the highest flubendazole IC50 and IC90 values but differences between drug classes did not reach statistical significance. Flubendazole induced p53-mediated apoptosis. The siRNA-mediated depletion of the p53 targets p21, BAX, or PUMA reduced the neuroblastoma cell sensitivity to flubendazole with PUMA depletion resulting in the most pronounced effects. The MDM2 inhibitor and p53 activator nutlin-3 increased flubendazole efficacy while RNAi-mediated p53-depletion reduced its activity. In conclusion, flubendazole represents a potential treatment option for neuroblastoma including therapy-refractory cells.
Cell Death and Disease | 2014
Simone Braig; Romina M. Wiedmann; Johanna Liebl; M. Singer; Rebekka Kubisch; Laura Schreiner; Behnaz Ahangarian Abhari; Ernst Wagner; Uli Kazmaier; Simone Fulda; Angelika M. Vollmar
Tubulin-binding agents such as taxol, vincristine or vinblastine are well-established drugs in clinical treatment of metastatic cancer. However, because of their highly complex chemical structures, the synthesis and hence the supply issues are still quite challenging. Here we set on stage pretubulysin, a chemically accessible precursor of tubulysin that was identified as a potent microtubule-binding agent produced by myxobacteria. Although much simpler in chemical structure, pretubulysin abrogates proliferation and long-term survival as well as anchorage-independent growth, and also induces anoikis and apoptosis in invasive tumor cells equally potent to tubulysin. Moreover, pretubulysin posseses in vivo efficacy shown in a chicken chorioallantoic membrane (CAM) model with T24 bladder tumor cells, in a mouse xenograft model using MDA-MB-231 mammary cancer cells and finally in a model of lung metastasis induced by 4T1 mouse breast cancer cells. Pretubulysin induces cell death via the intrinsic apoptosis pathway by abrogating the expression of pivotal antiapoptotic proteins, namely Mcl-1 and Bcl-xL, and shows distinct chemosensitizing properties in combination with TRAIL in two- and three-dimensional cell culture models. Unraveling the underlying signaling pathways provides novel information: pretubulysin induces proteasomal degradation of Mcl-1 by activation of mitogen-activated protein kinase (especially JNK (c-Jun N-terminal kinase)) and phosphorylation of Mcl-1, which is then targeted by the SCFFbw7 E3 ubiquitin ligase complex for ubiquitination and degradation. In sum, we designate the microtubule-destabilizing compound pretubulysin as a highly promising novel agent for mono treatment and combinatory treatment of invasive cancer.
Embo Molecular Medicine | 2016
Katharina Engel; Martina Rudelius; Jolanta Slawska; Laura Jacobs; Behnaz Ahangarian Abhari; Bettina Altmann; Julia Kurutz; Abirami Rathakrishnan; Vanesa Fernández-Sáiz; Andrä Brunner; Bianca-Sabrina Targosz; Felicia Loewecke; Christian Johannes Gloeckner; Marius Ueffing; Simone Fulda; Michael Pfreundschuh; Lorenz Trümper; Wolfram Klapper; Ulrich Keller; Philipp J. Jost; Andreas Rosenwald; Christian Peschel; Florian Bassermann
The mitotic spindle assembly checkpoint (SAC) maintains genome stability and marks an important target for antineoplastic therapies. However, it has remained unclear how cells execute cell fate decisions under conditions of SAC‐induced mitotic arrest. Here, we identify USP9X as the mitotic deubiquitinase of the X‐linked inhibitor of apoptosis protein (XIAP) and demonstrate that deubiquitylation and stabilization of XIAP by USP9X lead to increased resistance toward mitotic spindle poisons. We find that primary human aggressive B‐cell lymphoma samples exhibit high USP9X expression that correlate with XIAP overexpression. We show that high USP9X/XIAP expression is associated with shorter event‐free survival in patients treated with spindle poison‐containing chemotherapy. Accordingly, aggressive B‐cell lymphoma lines with USP9X and associated XIAP overexpression exhibit increased chemoresistance, reversed by specific inhibition of either USP9X or XIAP. Moreover, knockdown of USP9X or XIAP significantly delays lymphoma development and increases sensitivity to spindle poisons in a murine Eμ‐Myc lymphoma model. Together, we specify the USP9X–XIAP axis as a regulator of the mitotic cell fate decision and propose that USP9X and XIAP are potential prognostic biomarkers and therapeutic targets in aggressive B‐cell lymphoma.
Cancer Letters | 2016
Sabine Hannes; Behnaz Ahangarian Abhari; Simone Fulda
Evasion of apoptosis represents a key mechanism of treatment resistance of pancreatic cancer (PC) and contributes to the poor prognosis of this cancer type. Here, we report that induction of necroptosis is an alternative strategy to trigger programmed cell death in apoptosis-resistant PC cells. We show that the second mitochondrial activator of caspases (Smac) mimetic BV6 that antagonizes inhibitor of apoptosis (IAP) proteins induces necroptosis in PC cells in which apoptosis is blocked by the caspase inhibitor zVAD.fmk. Intriguingly, BV6 switches autocrine/paracrine production of tumor necrosis factor (TNF)α by PC cells into a death signal and also acts in concert with exogenously supplied TNFα to trigger necroptosis, when caspase activation is simultaneously blocked. BV6 stimulates TNFα production and formation of the receptor-interacting protein (RIP)1/RIP3-containing necrosome complex in PC cells. Knockdown of TNF receptor 1 (TNFR1) protects PC cells from BV6- or BV6/TNFα-mediated cell death, demonstrating that TNFα autocrine/paracrine signaling by PC cells contributes to BV6-induced necroptosis. Importantly, genetic silencing of receptor interacting protein kinase 3 (RIPK3) or mixed lineage kinase domain-like protein (MLKL) significantly rescues PC cells from BV6- or BV6/TNFα-induced cell death. Similarly, pharmacological inhibition of RIP1, RIP3 or MLKL significantly reduces BV6- or BV6/TNFα-stimulated cell death. By demonstrating that Smac mimetics can bypass resistance to apoptosis by triggering necroptosis as an alternative form of programmed cell death, our findings have important implications for the design of new treatment concepts for PC.
Cancer Letters | 2015
Juliane Liese; Behnaz Ahangarian Abhari; Simone Fulda
Chemotherapy resistance of hepatocellular carcinoma (HCC) is still a major unsolved problem highlighting the need to develop novel therapeutic strategies. Here, we identify a novel synergistic induction of cell death by the combination of the Smac mimetic BV6, which antagonizes Inhibitor of apoptosis (IAP) proteins, and the triterpenoid oleanolic acid (OA) in human HCC cells. Importantly, BV6 and OA also cooperate to suppress long-term clonogenic survival as well as tumor growth in a preclinical in vivo model of HCC underscoring the clinical relevance of our findings. In contrast, BV6/OA cotreatment does not exert cytotoxic effects against normal primary hepatocytes, pointing to some tumor selectivity. Mechanistic studies show that BV6/OA cotreatment leads to DNA fragmentation and caspase-3 cleavage, while supply of the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) revealed a cell type-dependent requirement of caspases for BV6/OA-induced cell death. The receptor interacting protein (RIP)1 kinase Inhibitor Necrostatin-1 (Nec-1) or genetic knockdown of RIP1 fails to rescue BV6/OA-mediated cell death, indicating that BV6/OA cotreatment does not primarily engage necroptotic cell death. Notably, the addition of several reactive oxygen species (ROS) scavengers significantly decreases BV6/OA-triggered cell death, indicating that ROS production contributes to BV6/OA-induced cell death. In conclusion, cotreatment of Smac mimetic and OA represents a novel approach for the induction of cell death in HCC and implicates further studies.
Frontiers in Pediatrics | 2014
Eva Rettinger; Andreas Glatthaar; Behnaz Ahangarian Abhari; Sarah Oelsner; Verena Pfirrmann; Sabine Huenecke; Selim Kuçi; Hermann Kreyenberg; Andre Willasch; Thomas Klingebiel; Simone Fulda; Peter Bader
Allogeneic hematopoietic stem cell transplantation (HSCT) is an established treatment option for high-risk hematological malignancies, and may also be offered to patients with solid malignancies refractory to conventional therapies. In case of patients’ relapse, refractory tumor cells may then be targeted by cellular therapy-based combination strategies. Here, we investigated the potential of small molecule IAP (SMAC mimetic) BV6 in increasing cytokine-induced killer (CIK) cell-mediated cytotoxicity against different tumor targets. Four-hour pre-incubation with 2.5 μMol BV6 moderately enhanced CIK cell-mediated lysis of hematological (H9, THP-1, and Tanoue) and solid malignancies (RH1, RH30, and TE671). However, BV6 also increased apoptosis of non-malignant cells like peripheral blood mononuclear cells and most notably had an inhibitory effect on immune cells potentially limiting their cytotoxic potential. Hence, cytotoxicity increased in a dose-dependent manner when BV6 was removed before CIK cells were added to tumor targets. However, cytotoxic potential was not further increasable by extending BV6 pre-incubation period of target cells from 4 to 12 h. Molecular studies revealed that BV6 sensitization of target cells involved activation of caspases. Here, we provide evidence that SMAC mimetic may sensitize targets cells for CIK cell-induced cell death. However, BV6 also increased apoptosis of non-malignant cells like CIK cells and peripheral mononuclear cells. These findings may therefore be important for cell- and small molecule IAP-based combination therapies of resistant cancers after allogeneic HSCT.
Biochemical Pharmacology | 2014
Simone Braig; Fabian Bischoff; Behnaz Ahangarian Abhari; Laurent Meijer; Simone Fulda; Leandros Skaltsounis; Angelika M. Vollmar
TRAIL (TNFα-related apoptosis-inducing factor) has been promoted as a promising anti-cancer agent. Unfortunately many tumor cells develop resistance towards TRAIL due to numerous defects in apoptotic signaling. To handle this problem combination therapy with compounds affecting as many different anti-apoptotic targets as possible might be a feasible approach. The bromo-substituted indirubin derivative 6BIO meets this challenge: Treatment of breast cancer and bladder carcinoma cell lines with micromolar concentrations of 6BIO abrogates cellular growth and induces apoptosis. Combination of subtoxic amounts of 6BIO with ineffective doses of TRAIL completely abolishes proliferation and long-term survival of cancer cells. As shown in two-dimensional as well as three-dimensional cell culture models, 6BIO potently augments TRAIL-induced apoptosis in cancer cell lines. The potent chemosensitizing effect of 6BIO to TRAIL-mediated cell death is due to the pleiotropic inhibitory profile of 6BIO. As shown previously, 6BIO abrogates STAT3, PDK1 as well as GSK3 signaling and moreover, inhibits the expression of the anti-apoptotic Bcl-2 family members Bcl-xL and Mcl-1 on mRNA as well as on protein level, as demonstrated in this study. Moreover, the expression of cFLIP and cIAP1 is significantly downregulated in 6BIO treated cancer cell lines. In sum (subtoxic concentration of) the multi-kinase inhibitor 6BIO serves as a potent chemosensitizing agent fighting TRAIL resistant cancer cells.
Biochemical Pharmacology | 2016
Matthias Lange; Behnaz Ahangarian Abhari; Tobias M. Hinrichs; Simone Fulda; Juliane Liese
The lack of effective chemotherapies in hepatocellular carcinoma (HCC) is still an unsolved problem and underlines the need for new strategies in liver cancer treatment. In this study, we present a novel approach to improve the efficacy of Sorafenib, todays only routinely used chemotherapeutic drug for HCC, in combination with triterpenoid oleanolic acid (OA). Our data show that cotreatment with subtoxic concentrations of Sorafenib and OA leads to highly synergistic induction of cell death. Importantly, Sorafenib/OA cotreatment triggers cell damage in a sustained manner and suppresses long-term clonogenic survival. Sorafenib/OA cotreatment induces DNA fragmentation and caspase-3/7 cleavage and the addition of the pan-caspase inhibitor zVAD.fmk shows the requirement of caspase activation for Sorafenib/OA-triggered cell death. Furthermore, Sorafenib/OA co-treatment stimulates a significant increase in reactive oxygen species (ROS) levels. Most importantly, the accumulation of intracellular ROS is required for cell death induction, since the addition of ROS scavengers (i.e. α-tocopherol, MnTBAP) that prevent the increase of intracellular ROS levels completely rescues cells from Sorafenib/OA-triggered cell death. In conclusion, OA represents a novel approach to increase the sensitivity of HCC cells to Sorafenib via oxidative stress.
Oncotarget | 2015
Sebastian Czaplinski; Behnaz Ahangarian Abhari; Alica Torkov; Dominik Seggewiß; Manuela Hugle; Simone Fulda
We explored the potential of Smac mimetics, which antagonize Inhibitor of Apoptosis (IAP) proteins, for chemosensitization of neuroblastoma (NB). Here, we report that Smac mimetics, e.g. BV6, prime NB cells for chemotherapeutics including the topoisomerase II inhibitor doxorubicin (DOX) and vinca alkaloids such as Vincristine (VCR), Vinblastine (VBL) and Vinorelbine (VNR). Additionally, BV6 acts in concert with DOX or VCR to suppress long-term clonogenic growth. While BV6 causes rapid downregulation of cellular IAP (cIAP)1 protein and nuclear factor-kappaB (NF-κB) activation, DOX/BV6- or VCR/BV6-induced apoptosis occurs independently of NF-κB or TNFα signaling, since overexpression of dominant-negative IκBα superrepressor or the Tumor Necrosis Factor (TNF)α-blocking antibody Enbrel fail to block cell death. Mechanistic studies reveal that Receptor-interacting protein (RIP)1 is required for DOX/BV6-, but not for VCR/BV6-induced apoptosis, since transient or stable knockdown of RIP1 or the pharmacological RIP1 inhibitor necrostatin-1 significantly reduce apoptosis. By comparison, VCR/BV6-mediated apoptosis critically depends on the mitochondrial pathway. VCR/BV6 cotreatment causes phosphorylation of BCL-2 during mitotic arrest, enhanced activation of BAX and BAK and loss of mitochondrial membrane potential (MMP). Additionally, overexpression of BCL-2 profoundly suppresses VCR/BV6-induced apoptosis. Thus, BV6 sensitizes NB cells to chemotherapy-induced apoptosis via distinct initial signaling mechanisms depending on the chemotherapeutic drug. These findings provide novel mechanistic insights into Smac mimetic-mediated chemosensitization of NB.