Behzad Javaheri
Royal Veterinary College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Behzad Javaheri.
Journal of Bone and Mineral Research | 2014
Behzad Javaheri; Amber Rath Stern; N. Lara; Mark Dallas; Hong Zhao; Ying Liu; Lynda F. Bonewald; Mark L. Johnson
The Wnt/β‐catenin signaling pathway is essential for bone cell viability and function and for skeletal integrity. To determine if β‐catenin in osteocytes plays a role in the bone anabolic response to mechanical loading, 18‐ to 24‐week‐old osteocyte β‐catenin haploinsufficient mice (Dmp1‐Cre × β‐catenin fl/ + ; HET cKO) were compared with their β‐catenin fl/fl (control) littermates. Trabecular bone volume (BV/TV) was significantly less (58.3%) in HET cKO females versus controls, whereas male HET cKO and control mice were not significantly different. Trabecular number was significantly less in HET cKO mice compared with controls for both genders, and trabecular separation was greater in female HET cKO mice. Osteoclast surface was significantly greater in female HET cKO mice. Cortical bone parameters in males and females showed subtle or no differences between HET cKO and controls. The right ulnas were loaded in vivo at 100 cycles, 2 Hz, 2500 µϵ, 3 days per week for 3 weeks, and the left ulnas served as nonloaded controls. Calcein and alizarin complexone dihydrate were injected 10 days and 3 days before euthanization, respectively. Micro‐computed tomography (µCT) analysis detected an 8.7% and 7.1% increase in cortical thickness in the loaded right ulnas of male and female control mice, respectively, compared with their nonloaded left ulnas. No significant increase in new cortical bone formation was observed in the HET cKO mice. Histomorphometric analysis of control mice showed a significant increase in endocortical and periosteal mineral apposition rate (MAR), bone‐formation rate/bone surface (BFR/BS), BFR/BV, and BFR/TV in response to loading, but no significant increases were detected in the loaded HET cKO mice. These data show that deleting a single copy of β‐catenin in osteocytes abolishes the anabolic response to loading, that trabecular bone in females is more severely affected and suggest that a critical threshold of β‐catenin is required for bone formation in response to mechanical loading.
Bone | 2015
N. Lara-Castillo; N.A. Kim-Weroha; Mohamed A Kamel; Behzad Javaheri; D.L. Ellies; R.E. Krumlauf; Ganesh Thiagarajan; Mark L. Johnson
The response of the skeleton to loading appears to be mediated through the activation of the Wnt/β-catenin signaling pathway and osteocytes have long been postulated to be the primary mechanosensory cells in bone. To examine the kinetics of the mechanoresponse of bone and cell types involved in vivo, we performed forearm loading of 17-week-old female TOPGAL mice. β-catenin signaling was observed only in embedded osteocytes, not osteoblasts, at 1h post-loading, spreading to additional osteocytes and finally to cells on the bone surface by 24h. This early activation at 1h appeared to be independent of receptor (Lrp5/6) mediated activation as it occurred in the presence of the inhibitors sclerostin and/or Dkk1. The COX-2 inhibitor, Carprofen, blocked the activation of β-catenin signaling and decline in sclerostin positive osteocytes post-loading implying an important role for prostaglandin. In vitro, PI3K/Akt activation was shown to be required for β-catenin nuclear translocation downstream from prostaglandin in MLO-Y4 osteocyte-like cells supporting this mechanism. Downstream targets of β-catenin signaling, sclerostin and Dkk1, were also examined and found to be significantly downregulated in osteocytes in vivo at 24h post-loading. The pattern of initially activated osteocytes appeared random and in order to understand this heterogeneous expression, a novel finite element model of the strain field in the ulna was developed, which predicts highly variable local magnitudes of strain experienced by osteocytes. In summary, both in vivo and in vitro models show the rapid activation of β-catenin in response to load through the early release of prostaglandin and that strain fields in the bone are extremely heterogeneous resulting in heterogeneous activation of the β-catenin pathway in osteocytes in vivo.
Journal of the Royal Society Interface | 2015
Andre F. Pereira; Behzad Javaheri; Andrew A. Pitsillides; Sandra J. Shefelbine
The development of predictive mathematical models can contribute to a deeper understanding of the specific stages of bone mechanobiology and the process by which bone adapts to mechanical forces. The objective of this work was to predict, with spatial accuracy, cortical bone adaptation to mechanical load, in order to better understand the mechanical cues that might be driving adaptation. The axial tibial loading model was used to trigger cortical bone adaptation in C57BL/6 mice and provide relevant biological and biomechanical information. A method for mapping cortical thickness in the mouse tibia diaphysis was developed, allowing for a thorough spatial description of where bone adaptation occurs. Poroelastic finite-element (FE) models were used to determine the structural response of the tibia upon axial loading and interstitial fluid velocity as the mechanical stimulus. FE models were coupled with mechanobiological governing equations, which accounted for non-static loads and assumed that bone responds instantly to local mechanical cues in an on–off manner. The presented formulation was able to simulate the areas of adaptation and accurately reproduce the distributions of cortical thickening observed in the experimental data with a statistically significant positive correlation (Kendalls τ rank coefficient τ = 0.51, p < 0.001). This work demonstrates that computational models can spatially predict cortical bone mechanoadaptation to a time variant stimulus. Such models could be used in the design of more efficient loading protocols and drug therapies that target the relevant physiological mechanisms.
Bone | 2015
Behzad Javaheri; Alessandra Carriero; Katherine Staines; Y.M. Chang; Dean Houston; Karla Oldknow; José Luis Millán; Bassir N. Kazeruni; P. Salmon; Sandra J. Shefelbine; Colin Farquharson; Andrew A. Pitsillides
PHOSPHO1 is one of principal proteins involved in initiating bone matrix mineralisation. Recent studies have found that Phospho1 KO mice (Phospho1-R74X) display multiple skeletal abnormalities with spontaneous fractures, bowed long bones, osteomalacia and scoliosis. These analyses have however been limited to young mice and it remains unclear whether the role of PHOSPHO1 is conserved in the mature murine skeleton where bone turnover is limited. In this study, we have used ex-vivo computerised tomography to examine the effect of Phospho1 deletion on tibial bone architecture in mice at a range of ages (5, 7, 16 and 34 weeks of age) to establish whether its role is conserved during skeletal growth and maturation. Matrix mineralisation has also been reported to influence terminal osteoblast differentiation into osteocytes and we have also explored whether hypomineralised bones in Phospho1 KO mice exhibit modified osteocyte lacunar and vascular porosity. Our data reveal that Phospho1 deficiency generates age-related defects in trabecular architecture and compromised cortical microarchitecture with greater porosity accompanied by marked alterations in osteocyte shape, significant increases in osteocytic lacuna and vessel number. Our in vitro studies examining the behaviour of osteoblast derived from Phospho1 KO and wild-type mice reveal reduced levels of matrix mineralisation and modified osteocytogenic programming in cells deficient in PHOSPHO1. Together our data suggest that deficiency in PHOSPHO1 exerts modifications in bone architecture that are transient and depend upon age, yet produces consistent modification in lacunar and vascular porosity. It is possible that the inhibitory role of PHOSPHO1 on osteocyte differentiation leads to these age-related changes in bone architecture. It is also intriguing to note that this apparent acceleration in osteocyte differentiation evident in the hypomineralised bones of Phospho1 KO mice suggests an uncoupling of the interplay between osteocytogenesis and biomineralisation. Further studies are required to dissect the molecular processes underlying the regulatory influences exerted by PHOSPHO1 on the skeleton with ageing.
PLOS ONE | 2016
Behzad Javaheri; Mark Hopkinson; B. Poulet; A. S. Pollard; Sandra J. Shefelbine; Y.M. Chang; Philippa Francis-West; George Bou-Gharios; Andrew A. Pitsillides
Tissue inhibitor of metalloproteinases-3 (TIMP-3) regulates extracellular matrix via its inhibition of matrix metalloproteinases and membrane-bound sheddases. Timp-3 is expressed at multiple sites of extensive tissue remodelling. This extends to bone where its role, however, remains largely unresolved. In this study, we have used Micro-CT to assess bone mass and architecture, histological and histochemical evaluation to characterise the skeletal phenotype of Timp-3 KO mice and have complemented this by also examining similar indices in mice harbouring a Timp-3 transgene driven via a Col-2a-driven promoter to specifically target overexpression to chondrocytes. Our data show that Timp-3 deficiency compromises tibial bone mass and structure in both cortical and trabecular compartments, with corresponding increases in osteoclasts. Transgenic overexpression also generates defects in tibial structure predominantly in the cortical bone along the entire shaft without significant increases in osteoclasts. These alterations in cortical mass significantly compromise predicted tibial load-bearing resistance to torsion in both genotypes. Neither Timp-3 KO nor transgenic mouse growth plates are significantly affected. The impact of Timp-3 deficiency and of transgenic overexpression extends to produce modification in craniofacial bones of both endochondral and intramembranous origins. These data indicate that the levels of Timp-3 are crucial in the attainment of functionally-appropriate bone mass and architecture and that this arises from chondrogenic and osteogenic lineages.
Molecular Neurodegeneration | 2017
Daniel C. Berwick; Behzad Javaheri; Andrea Wetzel; Mark Hopkinson; Jonathon Nixon-Abell; Simone Grannó; Andrew A. Pitsillides; Kirsten Harvey
BackgroundLRRK2 mutations and risk variants increase susceptibility to inherited and idiopathic Parkinson’s disease, while recent studies have identified potential protective variants. This, and the fact that LRRK2 mutation carriers develop symptoms and brain pathology almost indistinguishable from idiopathic Parkinson’s disease, has led to enormous interest in this protein. LRRK2 has been implicated in a range of cellular events, but key among them is canonical Wnt signalling, which results in increased levels of transcriptionally active β-catenin. This pathway is critical for the development and survival of the midbrain dopaminergic neurones typically lost in Parkinson’s disease.MethodsHere we use Lrrk2 knockout mice and fibroblasts to investigate the effect of loss of Lrrk2 on canonical Wnt signalling in vitro and in vivo. Micro-computed tomography was used to study predicted tibial strength, while pulldown assays were employed to measure brain β-catenin levels. A combination of luciferase assays, immunofluorescence and co-immunoprecipitation were performed to measure canonical Wnt activity and investigate the relationship between LRRK2 and β-catenin. TOPflash assays are also used to study the effects of LRRK2 kinase inhibition and pathogenic and protective LRRK2 mutations on Wnt signalling. Data were tested by Analysis of Variance.ResultsLoss of Lrrk2 causes a dose-dependent increase in the levels of transcriptionally active β-catenin in the brain, and alters tibial bone architecture, decreasing the predicted risk of fracture. Lrrk2 knockout cells display increased TOPflash and Axin2 promoter activities, both basally and following Wnt activation. Consistently, over-expressed LRRK2 was found to bind β-catenin and repress TOPflash activation. Some pathogenic LRRK2 mutations and risk variants further suppressed TOPflash, whereas the protective R1398H variant increased Wnt signalling activity. LRRK2 kinase inhibitors affected canonical Wnt signalling differently due to off-targeting; however, specific LRRK2 inhibition reduced canonical Wnt signalling similarly to pathogenic mutations.ConclusionsLoss of LRRK2 causes increased canonical Wnt activity in vitro and in vivo. In agreement, over-expressed LRRK2 binds and represses β-catenin, suggesting LRRK2 may act as part of the β-catenin destruction complex. Since some pathogenic LRRK2 mutations enhance this effect while the protective R1398H variant relieves it, our data strengthen the notion that decreased canonical Wnt activity is central to Parkinson’s disease pathogenesis.
Cell Biochemistry and Function | 2017
Rosemary F. L. Suswillo; Behzad Javaheri; Simon C.F. Rawlinson; Gary P. Dowthwaite; Lance E. Lanyon; Andrew A. Pitsillides
Identifying mechanisms by which cells of the osteoblastic lineage communicate in vivo is complicated by the mineralised matrix that encases osteocytes, and thus, vital mechanoadaptive processes used to achieve load‐bearing integrity remain unresolved. We have used the coculture of immunomagnetically purified osteocytes and primary osteoblasts from both embryonic chick long bone and calvariae to examine these mechanisms. We exploited the fact that purified osteocytes are postmitotic to examine both their effect on proliferation of primary osteoblasts and the role of gap junctions in such communication. We found that chick long bone osteocytes significantly increased basal proliferation of primary osteoblasts derived from an identical source (tibiotarsi). Using a gap junction inhibitor, 18β‐glycyrrhetinic acid, we also demonstrated that this osteocyte‐related increase in osteoblast proliferation was not reliant on functional gap junctions. In contrast, osteocytes purified from calvarial bone failed to modify basal proliferation of primary osteoblast, but long bone osteocytes preserved their proproliferative action upon calvarial‐derived primary osteoblasts.
Bone | 2017
Behzad Javaheri; B. Poulet; Ahmed Al-Jazzar; Roberto Lopes de Souza; Miriam Piles; Mark Hopkinson; Elaine Shervill; A. S. Pollard; Boris Pok Man Chan; Y.M. Chang; Isabel R. Orriss; Peter D. Lee; Andrew A. Pitsillides
Osteoarthritis (OA), affecting joints and bone, causes physical gait disability with huge socio-economic burden; treatment remains palliative. Roles for antioxidants in protecting against such chronic disorders have been examined previously. Sulforaphane is a naturally occurring antioxidant. Herein, we explore whether SFX-01®, a stable synthetic form of sulforaphane, modifies gait, bone architecture and slows/reverses articular cartilage destruction in a spontaneous OA model in STR/Ort mice. Sixteen mice (n = 8/group) were orally treated for 3 months with either 100 mg/kg SFX-01® or vehicle. Gait was recorded, tibiae were microCT scanned and analysed. OA lesion severity was graded histologically. The effect of SFX-01® on bone turnover markers in vivo was complemented by in vitro bone formation and resorption assays. Analysis revealed development of OA-related gait asymmetry in vehicle-treated STR/Ort mice, which did not emerge in SFX-01®-treated mice. We found significant improvements in trabecular and cortical bone. Despite these marked improvements, we found that histologically-graded OA severity in articular cartilage was unmodified in treated mice. These changes are also reflected in anabolic and anti-catabolic actions of SFX-01® treatment as reflected by alteration in serum markers as well as changes in primary osteoblast and osteoclast-like cells in vitro. We report that SFX-01® improves bone microarchitecture in vivo, produces corresponding changes in bone cell behaviour in vitro and leads to greater symmetry in gait, without marked effects on cartilage lesion severity in STR/Ort osteoarthritic mice. Our findings support both osteotrophic roles and novel beneficial gait effects for SFX-01® in this model of spontaneous OA.
Scientific Reports | 2018
Behzad Javaheri; Alessandra Carriero; Maria Wood; Roberto Lopes de Souza; Peter D. Lee; Sandra J. Shefelbine; Andrew A. Pitsillides
Mechanoadaptation maintains bone mass and architecture; its failure underlies age-related decline in bone strength. It is unclear whether this is due to failure of osteocytes to sense strain, osteoblasts to form bone or insufficient mechanical stimulus. Mechanoadaptation can be restored to aged bone by surgical neurectomy, suggesting that changes in loading history can rescue mechanoadaptation. We use non-biased, whole-bone tibial analyses, along with characterisation of surface strains and ensuing mechanoadaptive responses in mice at a range of ages, to explore whether sufficient load magnitude can activate mechanoadaptation in aged bone. We find that younger mice adapt when imposed strains are lower than in mature and aged bone. Intriguingly, imposition of short-term, high magnitude loading effectively primes cortical but not trabecular bone of aged mice to respond. This response was regionally-matched to highest strains measured by digital image correlation and to osteocytic mechanoactivation. These data indicate that aged bone’s loading response can be partially recovered, non-invasively by transient, focal high strain regions. Our results indicate that old murine bone does respond to load when the loading is of sufficient magnitude, and bones’ age-related adaptation failure may be due to insufficient mechanical stimulus to trigger mechanoadaptation.
Osteoarthritis and Cartilage | 2018
Behzad Javaheri; H. Razi; M. Piles; R. de Souza; Y.M. Chang; I. Maric-Mur; Mark Hopkinson; Peter D. Lee; Andrew A. Pitsillides
Summary Objectives Human osteoarthritis (OA) is detected only at late stages. Male STR/Ort mice develop knee OA spontaneously with known longitudinal trajectory, offering scope to identify OA predisposing factors. We exploit the lack of overt OA in female STR/Ort and in both sexes of parental, control CBA mice to explore whether early divergence in tibial bone mass or shape are linked to emergent OA. Method We undertook detailed micro-CT comparisons of trabecular and cortical bone, multiple structural/architectural parameters and finite element modelling (FEM) of the tibia from male and female STR/Ort and CBA mice at 8–10 (pre-OA), 18–20 (OA onset) and 40 + weeks (advanced OA) of age. Results We found higher trabecular bone mass in female STR/Ort than in either OA-prone male STR/Ort or non-prone CBA mice. Cortical bone, as expected, showed greater cross-sectional area in male than female CBA, which surprisingly was reversed in STR/Ort mice. STR/Ort also exhibited higher cortical bone mass than CBA mice. Our analyses revealed similar tibial ellipticity, yet greater predicted resistance to torsion in male than female CBA mice. In contrast, male STR/Ort exhibited greater ellipticity than both female STR/Ort and CBA mice at specific cortical sites. Longitudinal analysis revealed greater tibia curvature and shape deviations in male STR/Ort mice that coincided with onset and were more pronounced in late OA. Conclusion Generalised higher bone mass in STR/Ort mice is more marked in non OA-prone females, but pre-OA divergence in bone shape is restricted to male STR/Ort mice in which OA develops spontaneously.