Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Hopkinson is active.

Publication


Featured researches published by Mark Hopkinson.


Bone | 2015

Chronic administration of Glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice.

Marie Pereira; J. Jeyabalan; C.S. Jørgensen; Mark Hopkinson; Ahmed Al-Jazzar; Jean-Paul Roux; Pascale Chavassieux; Isabel R. Orriss; Mark E. Cleasby; Chantal Chenu

Some anti-diabetic therapies can have adverse effects on bone health and increase fracture risk. In this study, we tested the skeletal effects of chronic administration of two Glucagon-like peptide-1 receptor agonists (GLP-1RA), increasingly used for type 2 diabetes treatment, in a model of osteoporosis associated bone loss and examined the expression and activation of GLP-1R in bone cells. Mice were ovariectomised (OVX) to induce bone loss and four weeks later they were treated with Liraglutide (LIR) 0.3mg/kg/day, Exenatide (Ex-4) 10 μg/kg/day or saline for four weeks. Mice were injected with calcein and alizarin red prior to euthanasia, to label bone-mineralising surfaces. Tibial micro-architecture was determined by micro-CT and bone formation and resorption parameters measured by histomorphometric analysis. Serum was collected to measure calcitonin and sclerostin levels, inhibitors of bone resorption and formation, respectively. GLP-1R mRNA and protein expression were evaluated in the bone, bone marrow and bone cells using RT-PCR and immunohistochemistry. Primary osteoclasts and osteoblasts were cultured to evaluate the effect of GLP-1RA on bone resorption and formation in vitro. GLP-1RA significantly increased trabecular bone mass, connectivity and structure parameters but had no effect on cortical bone. There was no effect of GLP-1RA on bone formation in vivo but an increase in osteoclast number and osteoclast surfaces was observed with Ex-4. GLP-1R was expressed in bone marrow cells, primary osteoclasts and osteoblasts and in late osteocytic cell line. Both Ex-4 and LIR stimulated osteoclastic differentiation in vitro but slightly reduced the area resorbed per osteoclast. They had no effect on bone nodule formation in vitro. Serum calcitonin levels were increased and sclerostin levels decreased by Ex-4 but not by LIR. Thus, GLP-1RA can have beneficial effects on bone and the expression of GLP-1R in bone cells may imply that these effects are exerted directly on the tissue.


Endocrinology | 2015

Excessive growth hormone expression in male GH transgenic mice adversely alters bone architecture and mechanical strength.

S. V. Lim; Massimo Marenzana; Mark Hopkinson; Edward O. List; John J. Kopchick; Marie Pereira; B. Javaheri; Jean-Paul Roux; Pascale Chavassieux; Márta Korbonits; Chantal Chenu

Patients with acromegaly have a higher prevalence of vertebral fractures despite normal bone mineral density (BMD), suggesting that GH overexpression has adverse effects on skeletal architecture and strength. We used giant bovine GH (bGH) transgenic mice to analyze the effects of high serum GH levels on BMD, architecture, and mechanical strength. Five-month-old hemizygous male bGH mice were compared with age- and sex-matched nontransgenic littermates controls (NT; n=16/group). Bone architecture and BMD were analyzed in tibia and lumbar vertebrae using microcomputed tomography. Femora were tested to failure using three-point bending and bone cellular activity determined by bone histomorphometry. bGH transgenic mice displayed significant increases in body weight and bone lengths. bGH tibia showed decreases in trabecular bone volume fraction, thickness, and number compared with NT ones, whereas trabecular pattern factor and structure model index were significantly increased, indicating deterioration in bone structure. Although cortical tissue perimeter was increased in transgenic mice, cortical thickness was reduced. bGH mice showed similar trabecular BMD but reduced trabecular thickness in lumbar vertebra relative to controls. Cortical BMD and thickness were significantly reduced in bGH lumbar vertebra. Mechanical testing of femora confirmed that bGH femora have decreased intrinsic mechanical properties compared with NT ones. Bone turnover is increased in favor of bone resorption in bGH tibia and vertebra compared with controls, and serum PTH levels is also enhanced in bGH mice. These data collectively suggest that high serum GH levels negatively affect bone architecture and quality at multiple skeletal sites.


Arthritis & Rheumatism | 2016

Endochondral Growth Defect and Deployment of Transient Chondrocyte Behaviors Underlie Osteoarthritis Onset in a Natural Murine Model

Katherine Staines; K. Madi; S.m. Mirczuk; S Parker; A. Burleigh; B. Poulet; Mark Hopkinson; Andrew J. Bodey; R.c. Fowkes; Colin Farquharson; Peter D. Lee; Andrew A. Pitsillides

To explore whether aberrant transient chondrocyte behaviors occur in the joints of STR/Ort mice (which spontaneously develop osteoarthritis [OA]) and whether they are attributable to an endochondral growth defect.


PLOS ONE | 2016

Deficiency and Also Transgenic Overexpression of Timp-3 Both Lead to Compromised Bone Mass and Architecture In Vivo

Behzad Javaheri; Mark Hopkinson; B. Poulet; A. S. Pollard; Sandra J. Shefelbine; Y.M. Chang; Philippa Francis-West; George Bou-Gharios; Andrew A. Pitsillides

Tissue inhibitor of metalloproteinases-3 (TIMP-3) regulates extracellular matrix via its inhibition of matrix metalloproteinases and membrane-bound sheddases. Timp-3 is expressed at multiple sites of extensive tissue remodelling. This extends to bone where its role, however, remains largely unresolved. In this study, we have used Micro-CT to assess bone mass and architecture, histological and histochemical evaluation to characterise the skeletal phenotype of Timp-3 KO mice and have complemented this by also examining similar indices in mice harbouring a Timp-3 transgene driven via a Col-2a-driven promoter to specifically target overexpression to chondrocytes. Our data show that Timp-3 deficiency compromises tibial bone mass and structure in both cortical and trabecular compartments, with corresponding increases in osteoclasts. Transgenic overexpression also generates defects in tibial structure predominantly in the cortical bone along the entire shaft without significant increases in osteoclasts. These alterations in cortical mass significantly compromise predicted tibial load-bearing resistance to torsion in both genotypes. Neither Timp-3 KO nor transgenic mouse growth plates are significantly affected. The impact of Timp-3 deficiency and of transgenic overexpression extends to produce modification in craniofacial bones of both endochondral and intramembranous origins. These data indicate that the levels of Timp-3 are crucial in the attainment of functionally-appropriate bone mass and architecture and that this arises from chondrogenic and osteogenic lineages.


Molecular Neurodegeneration | 2017

Pathogenic LRRK2 variants are gain-of-function mutations that enhance LRRK2-mediated repression of β-catenin signaling

Daniel C. Berwick; Behzad Javaheri; Andrea Wetzel; Mark Hopkinson; Jonathon Nixon-Abell; Simone Grannó; Andrew A. Pitsillides; Kirsten Harvey

BackgroundLRRK2 mutations and risk variants increase susceptibility to inherited and idiopathic Parkinson’s disease, while recent studies have identified potential protective variants. This, and the fact that LRRK2 mutation carriers develop symptoms and brain pathology almost indistinguishable from idiopathic Parkinson’s disease, has led to enormous interest in this protein. LRRK2 has been implicated in a range of cellular events, but key among them is canonical Wnt signalling, which results in increased levels of transcriptionally active β-catenin. This pathway is critical for the development and survival of the midbrain dopaminergic neurones typically lost in Parkinson’s disease.MethodsHere we use Lrrk2 knockout mice and fibroblasts to investigate the effect of loss of Lrrk2 on canonical Wnt signalling in vitro and in vivo. Micro-computed tomography was used to study predicted tibial strength, while pulldown assays were employed to measure brain β-catenin levels. A combination of luciferase assays, immunofluorescence and co-immunoprecipitation were performed to measure canonical Wnt activity and investigate the relationship between LRRK2 and β-catenin. TOPflash assays are also used to study the effects of LRRK2 kinase inhibition and pathogenic and protective LRRK2 mutations on Wnt signalling. Data were tested by Analysis of Variance.ResultsLoss of Lrrk2 causes a dose-dependent increase in the levels of transcriptionally active β-catenin in the brain, and alters tibial bone architecture, decreasing the predicted risk of fracture. Lrrk2 knockout cells display increased TOPflash and Axin2 promoter activities, both basally and following Wnt activation. Consistently, over-expressed LRRK2 was found to bind β-catenin and repress TOPflash activation. Some pathogenic LRRK2 mutations and risk variants further suppressed TOPflash, whereas the protective R1398H variant increased Wnt signalling activity. LRRK2 kinase inhibitors affected canonical Wnt signalling differently due to off-targeting; however, specific LRRK2 inhibition reduced canonical Wnt signalling similarly to pathogenic mutations.ConclusionsLoss of LRRK2 causes increased canonical Wnt activity in vitro and in vivo. In agreement, over-expressed LRRK2 binds and represses β-catenin, suggesting LRRK2 may act as part of the β-catenin destruction complex. Since some pathogenic LRRK2 mutations enhance this effect while the protective R1398H variant relieves it, our data strengthen the notion that decreased canonical Wnt activity is central to Parkinson’s disease pathogenesis.


Brain Pathology | 2016

Degree of Cajal–Retzius Cell Mislocalization Correlates with the Severity of Structural Brain Defects in Mouse Models of Dystroglycanopathy

H. Booler; Josie L. Williams; Mark Hopkinson; Susan C. Brown

The secondary dystroglycanopathies are characterized by the hypoglycosylation of alpha dystroglycan, and are associated with mutations in at least 18 genes that act on the glycosylation of this cell surface receptor rather than the Dag1 gene itself. At the severe end of the disease spectrum, there are substantial structural brain defects, the most striking of which is often cobblestone lissencephaly. The aim of this study was to determine the gene‐specific aspects of the dystroglycanopathy brain phenotype through a detailed investigation of the structural brain defects present at birth in three mouse models of dystroglycanopathy—the FKRPKD, which has an 80% reduction in Fkrp transcript levels; the Pomgnt1null, which carries a deletion of exons 7–16 of the Pomgnt1 gene; and the Largemyd mouse, which carries a deletion of exons 5–7 of the Large gene. We show a rostrocaudal and mediolateral gradient in the severity of brain lesions in FKRPKD, and to a lesser extent Pomgnt1null mice. Furthermore, the mislocalization of Cajal–Retzius cells is correlated with the gradient of these lesions and the severity of the brain phenotype in these models. Overall these observations implicate gene‐specific differences in the pathogenesis of brain lesions in this group of disorders.


Bone | 2017

Stable sulforaphane protects against gait anomalies and modifies bone microarchitecture in the spontaneous STR/Ort model of osteoarthritis

Behzad Javaheri; B. Poulet; Ahmed Al-Jazzar; Roberto Lopes de Souza; Miriam Piles; Mark Hopkinson; Elaine Shervill; A. S. Pollard; Boris Pok Man Chan; Y.M. Chang; Isabel R. Orriss; Peter D. Lee; Andrew A. Pitsillides

Osteoarthritis (OA), affecting joints and bone, causes physical gait disability with huge socio-economic burden; treatment remains palliative. Roles for antioxidants in protecting against such chronic disorders have been examined previously. Sulforaphane is a naturally occurring antioxidant. Herein, we explore whether SFX-01®, a stable synthetic form of sulforaphane, modifies gait, bone architecture and slows/reverses articular cartilage destruction in a spontaneous OA model in STR/Ort mice. Sixteen mice (n = 8/group) were orally treated for 3 months with either 100 mg/kg SFX-01® or vehicle. Gait was recorded, tibiae were microCT scanned and analysed. OA lesion severity was graded histologically. The effect of SFX-01® on bone turnover markers in vivo was complemented by in vitro bone formation and resorption assays. Analysis revealed development of OA-related gait asymmetry in vehicle-treated STR/Ort mice, which did not emerge in SFX-01®-treated mice. We found significant improvements in trabecular and cortical bone. Despite these marked improvements, we found that histologically-graded OA severity in articular cartilage was unmodified in treated mice. These changes are also reflected in anabolic and anti-catabolic actions of SFX-01® treatment as reflected by alteration in serum markers as well as changes in primary osteoblast and osteoclast-like cells in vitro. We report that SFX-01® improves bone microarchitecture in vivo, produces corresponding changes in bone cell behaviour in vitro and leads to greater symmetry in gait, without marked effects on cartilage lesion severity in STR/Ort osteoarthritic mice. Our findings support both osteotrophic roles and novel beneficial gait effects for SFX-01® in this model of spontaneous OA.


Osteoarthritis and Cartilage | 2018

Sexually dimorphic tibia shape is linked to natural osteoarthritis in STR/Ort mice

Behzad Javaheri; H. Razi; M. Piles; R. de Souza; Y.M. Chang; I. Maric-Mur; Mark Hopkinson; Peter D. Lee; Andrew A. Pitsillides

Summary Objectives Human osteoarthritis (OA) is detected only at late stages. Male STR/Ort mice develop knee OA spontaneously with known longitudinal trajectory, offering scope to identify OA predisposing factors. We exploit the lack of overt OA in female STR/Ort and in both sexes of parental, control CBA mice to explore whether early divergence in tibial bone mass or shape are linked to emergent OA. Method We undertook detailed micro-CT comparisons of trabecular and cortical bone, multiple structural/architectural parameters and finite element modelling (FEM) of the tibia from male and female STR/Ort and CBA mice at 8–10 (pre-OA), 18–20 (OA onset) and 40 + weeks (advanced OA) of age. Results We found higher trabecular bone mass in female STR/Ort than in either OA-prone male STR/Ort or non-prone CBA mice. Cortical bone, as expected, showed greater cross-sectional area in male than female CBA, which surprisingly was reversed in STR/Ort mice. STR/Ort also exhibited higher cortical bone mass than CBA mice. Our analyses revealed similar tibial ellipticity, yet greater predicted resistance to torsion in male than female CBA mice. In contrast, male STR/Ort exhibited greater ellipticity than both female STR/Ort and CBA mice at specific cortical sites. Longitudinal analysis revealed greater tibia curvature and shape deviations in male STR/Ort mice that coincided with onset and were more pronounced in late OA. Conclusion Generalised higher bone mass in STR/Ort mice is more marked in non OA-prone females, but pre-OA divergence in bone shape is restricted to male STR/Ort mice in which OA develops spontaneously.


Journal of Cellular Physiology | 2017

Hypomorphic conditional deletion of E11/Podoplanin reveals a role in osteocyte dendrite elongation†

Katherine Staines; Behzad Javaheri; Peter Hohenstein; Robert Fleming; Ekele Ikpegbu; Erin Unger; Mark Hopkinson; David J. Buttle; Andrew A. Pitsillides; Colin Farquharson

The transmembrane glycoprotein E11/Podoplanin (Pdpn) has been implicated in the initial stages of osteocyte differentiation. However, its precise function and regulatory mechanisms are still unknown. Due to the known embryonic lethality induced by global Pdpn deletion, we have herein explored the effect of bone‐specific Pdpn knockdown on osteocyte form and function in the post‐natal mouse. Extensive skeletal phenotyping of male and female 6‐week‐old Oc‐cre;Pdpnflox/flox (cKO) mice and their Pdpnflox/flox controls (fl/fl) has revealed that Pdpn deletion significantly compromises tibial cortical bone microarchitecture in both sexes, albeit to different extents (p < 0.05). Consistent with this, we observed an increase in stiffness in female cKO mice in comparison to fl/fl mice (p < 0.01). Moreover, analysis of the osteocyte phenotype by phalloidin staining revealed a significant decrease in the dendrite volume (p < 0.001) and length (p < 0.001) in cKO mice in which deletion of Pdpn also modifies the bone anabolic loading response (p < 0.05) in comparison to age‐matched fl/fl mice. Together, these data confirm a regulatory role for Pdpn in osteocyte dendrite formation and as such, in the control of osteocyte function. As the osteocyte dendritic network is known to play vital roles in regulating bone modeling/remodeling, this highlights an essential role for Pdpn in bone homeostasis.


PLOS ONE | 2016

Transgenic Rescue of the LARGEmyd Mouse: A LARGE Therapeutic Window?

John C.W. Hildyard; E. Lacey; H. Booler; Mark Hopkinson; Dominic J. Wells; Susan C. Brown

LARGE is a glycosyltransferase involved in glycosylation of α-dystroglycan (α-DG). Absence of this protein in the LARGEmyd mouse results in α-DG hypoglycosylation, and is associated with central nervous system abnormalities and progressive muscular dystrophy. Up-regulation of LARGE has previously been proposed as a therapy for the secondary dystroglycanopathies: overexpression in cells compensates for defects in multiple dystroglycanopathy genes. Counterintuitively, LARGE overexpression in an FKRP-deficient mouse exacerbates pathology, suggesting that modulation of α-DG glycosylation requires further investigation. Here we demonstrate that transgenic expression of human LARGE (LARGE-LV5) in the LARGEmyd mouse restores α-DG glycosylation (with marked hyperglycosylation in muscle) and that this corrects both the muscle pathology and brain architecture. By quantitative analyses of LARGE transcripts we also here show that levels of transgenic and endogenous LARGE in the brains of transgenic animals are comparable, but that the transgene is markedly overexpressed in heart and particularly skeletal muscle (20–100 fold over endogenous). Our data suggest LARGE overexpression may only be deleterious under a forced regenerative context, such as that resulting from a reduction in FKRP: in the absence of such a defect we show that systemic expression of LARGE can indeed act therapeutically, and that even dramatic LARGE overexpression is well-tolerated in heart and skeletal muscle. Moreover, correction of LARGEmyd brain pathology with only moderate, near-physiological LARGE expression suggests a generous therapeutic window.

Collaboration


Dive into the Mark Hopkinson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Poulet

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar

Susan C. Brown

Royal Veterinary College

View shared research outputs
Top Co-Authors

Avatar

Peter D. Lee

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Booler

Royal Veterinary College

View shared research outputs
Top Co-Authors

Avatar

Y.M. Chang

Royal Veterinary College

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge