Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bei Shan is active.

Publication


Featured researches published by Bei Shan.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Unsaturated fatty acids inhibit transcription of the sterol regulatory element-binding protein-1c (SREBP-1c) gene by antagonizing ligand-dependent activation of the LXR

Jiafu Ou; Hua Tu; Bei Shan; Alvin Luk; Russell A. DeBose-Boyd; Yuriy Bashmakov; Joseph L. Goldstein; Michael S. Brown

Sterol regulatory element-binding protein-1c (SREBP-1c) enhances transcription of genes encoding enzymes of unsaturated fatty acid biosynthesis in liver. SREBP-1c mRNA is known to increase when cells are treated with agonists of liver X receptor (LXR), a nuclear hormone receptor, and to decrease when cells are treated with unsaturated fatty acids, the end products of SREBP-1c action. Here we show that unsaturated fatty acids lower SREBP-1c mRNA levels in part by antagonizing the actions of LXR. In cultured rat hepatoma cells, arachidonic acid and other fatty acids competitively inhibited activation of the endogenous SREBP-1c gene by an LXR ligand. Arachidonate also blocked the activation of a synthetic LXR-dependent promoter in transfected human embryonic kidney-293 cells. In vitro, arachidonate and other unsaturated fatty acids competitively blocked activation of LXR, as reflected by a fluorescence polarization assay that measures ligand-dependent binding of LXR to a peptide derived from a coactivator. These data offer a potential mechanism that partially explains the long-known ability of dietary unsaturated fatty acids to decrease the synthesis and secretion of fatty acids and triglycerides in livers of humans and other animals.


Proceedings of the National Academy of Sciences of the United States of America | 2009

A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates

Joyce Chi Yee Chan; Derek E. Piper; Qiong Cao; Dongming Liu; Chadwick Terence King; Wei Wang; Jie Tang; Qiang Liu; Jared Higbee; Zhen Xia; Yongmei Di; Susan Shetterly; Ziva Arimura; Heather Salomonis; William G. Romanow; Stephen T. Thibault; Richard Zhang; Ping Cao; Xiaoping Yang; Timothy Yu; Mei Lu; Marc W. Retter; Gayle Kwon; Kirk Henne; Oscar Pan; Mei-Mei Tsai; Bryna Fuchslocher; Evelyn Yang; Lei Zhou; Ki Jeong Lee

Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates serum LDL cholesterol (LDL-C) by interacting with the LDL receptor (LDLR) and is an attractive therapeutic target for LDL-C lowering. We have generated a neutralizing anti-PCSK9 antibody, mAb1, that binds to an epitope on PCSK9 adjacent to the region required for LDLR interaction. In vitro, mAb1 inhibits PCSK9 binding to the LDLR and attenuates PCSK9-mediated reduction in LDLR protein levels, thereby increasing LDL uptake. A combination of mAb1 with a statin increases LDLR levels in HepG2 cells more than either treatment alone. In wild-type mice, mAb1 increases hepatic LDLR protein levels ≈2-fold and lowers total serum cholesterol by up to 36%: this effect is not observed in LDLR−/− mice. In cynomolgus monkeys, a single injection of mAb1 reduces serum LDL-C by 80%, and a significant decrease is maintained for 10 days. We conclude that anti-PCSK9 antibodies may be effective therapeutics for treating hypercholesterolemia.


PLOS ONE | 2012

A Potent Class of GPR40 Full Agonists Engages the EnteroInsular Axis to Promote Glucose Control in Rodents

Jian Luo; Gayathri Swaminath; Sean P. Brown; Jane Zhang; Qi Guo; Michael Chen; Kathy Nguyen; Thanhvien Tran; Lynn Miao; Paul John Dransfield; Marc Vimolratana; Jonathan B. Houze; Simon Wong; Maria M. Toteva; Bei Shan; Frank Li; Run Zhuang; Daniel C.-H. Lin

Type 2 diabetes is characterized by impaired glucose homeostasis due to defects in insulin secretion, insulin resistance and the incretin response. GPR40 (FFAR1 or FFA1) is a G-protein-coupled receptor (GPCR), primarily expressed in insulin-producing pancreatic β-cells and incretin-producing enteroendocrine cells of the small intestine. Several GPR40 agonists, including AMG 837 and TAK-875, have been disclosed, but no GPR40 synthetic agonists have been reported that engage both the insulinogenic and incretinogenic axes. In this report we provide a molecular explanation and describe the discovery of a unique and potent class of GPR40 full agonists that engages the enteroinsular axis to promote dramatic improvement in glucose control in rodents. GPR40 full agonists AM-1638 and AM-6226 stimulate GLP-1 and GIP secretion from intestinal enteroendocrine cells and increase GSIS from pancreatic islets, leading to enhanced glucose control in the high fat fed, streptozotocin treated and NONcNZO10/LtJ mouse models of type 2 diabetes. The improvement in hyperglycemia by AM-1638 was reduced in the presence of the GLP-1 receptor antagonist Ex(9–39)NH2.


Trends in Cardiovascular Medicine | 2000

FXR, a bile acid receptor and biological sensor.

Hua Tu; Arthur Y. Okamoto; Bei Shan

Bile acid synthesis is a major pathway for cholesterol disposal and thus represents a potential therapeutic target pathway for the treatment of hypercholesterolemia. Recently, the nuclear farnesoid X receptor (FXR) was identified as a bile acid receptor and biological sensor for the regulation of bile acid biosynthesis. FXR was shown to regulate cholesterol metabolism in two ways: (1) chenodeoxycholic acid (CDCA), a primary bile acid, binds directly to and activates FXR, which then mediates the feedback suppression by bile acids of cholesterol 7 alpha-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid biosynthesis from cholesterol; and (2) FXR participates in the activation of intestinal bile acid binding protein (IBABP), which is involved in the enterohepatic circulation of bile acids. Thus FXR constitutes a potential therapeutic target that can be modulated to enhance the removal of cholesterol from the body.


Bioorganic & Medicinal Chemistry Letters | 1999

Novel halogenated sulfonamides inhibit the growth of multidrug resistant MCF-7/ADR cancer cells

Julio C. Medina; Daniel Roche; Bei Shan; R. Marc Learned; Walter Frankmoelle; David Clark; Terry Rosen; Juan C. Jaen

In this report, we describe the synthesis of halogenated benzenesulfonamide compounds and their ability to inhibit the growth of HeLa, MCF-7 and MCF-7/ADR tumor cells in vitro. The multidrug resistance (MDR) phenotype of certain cells does not affect their sensitivity to these compounds. These agents belong to a family of compounds previously shown to bind irreversibly to cysteine-239 of beta-tubulin. Consistent with this mechanism of action, the cytotoxicities of these compounds appear to correlate with their ability to undergo nucleophilic aromatic substitution.


Journal of Biological Chemistry | 2009

Identification and characterization of a non-retinoid ligand for retinol-binding protein 4 which lowers serum retinol-binding protein 4 levels in vivo

Alykhan Motani; Zhulun Wang; Marion Conn; Karen Siegler; Ying Zhang; Qingxiang Liu; Sheree Johnstone; Haoda Xu; Steve Thibault; Yingcai Wang; Pingchen Fan; Richard V. Connors; Hoa Le; Guifen Xu; Nigel Walker; Bei Shan; Peter Coward

Retinol-binding protein 4 (RBP4) transports retinol from the liver to extrahepatic tissues, and RBP4 lowering is reported to improve insulin sensitivity in mice. We have identified A1120, a high affinity (Ki = 8.3 nm) non-retinoid ligand for RBP4, which disrupts the interaction between RBP4 and its binding partner transthyretin. Analysis of the RBP4-A1120 co-crystal structure reveals that A1120 induces critical conformational changes at the RBP4-transthyretin interface. Administration of A1120 to mice lowers serum RBP4 and retinol levels but, unexpectedly, does not improve insulin sensitivity. In addition, we show that Rpb4-/- mice display normal insulin sensitivity and are not protected from high fat diet-induced insulin resistance. We conclude that lowering RBP4 levels does not improve insulin sensitivity in mice. Therefore, RBP4 lowering may not be an effective strategy for treating diabetes.


Bioorganic & Medicinal Chemistry Letters | 1998

Novel antineoplastic agents with efficacy against multidrug resistant tumor cells

Julio C. Medina; Bei Shan; Holger Beckmann; Robert P. Farrell; David Clark; R. Marc Learned; Daniel Roche; Angela Li; Vijay Baichwal; Casey Case; Patrick A. Baeuerle; Terry Rosen; Juan C. Jaen

A novel series of pentafluorobenzenesulfonamides has been shown to inhibit the growth of a variety of human tumor cell lines. Among the cell types against which these agents were evaluated were the multidrug resistant (MDR) cell lines MCF-7/ADR and P388/ADR. The cytotoxic activity of members of this series of compounds was not affected by the multidrug resistant pump in MCF-7/ADR or P388/ADR cells.


Bioorganic & Medicinal Chemistry Letters | 2010

Discovery of pyrrolopyridazines as novel DGAT1 inhibitors.

Brian M. Fox; Kiyosei Iio; Kexue Li; Rebeka Choi; Takashi Inaba; Simon Jackson; Shoichi Sagawa; Bei Shan; Masahiro Tanaka; Atsuhito Yoshida; Frank Kayser

A new structural class of DGAT1 inhibitors was discovered and the structure-activity relationship was explored. The pyrrolotriazine core of the original lead molecule was changed to a pyrrolopyridazine core providing an increase in potency. Further exploration resulted in optimization of the propyl group at C7 and the discovery that the ester at C6 could be replaced by five-membered heterocyclic rings. The analogs prepared have DGAT1 IC(50) values ranging from >10 μM to 48 nM.


Journal of Medicinal Chemistry | 2014

Discovery of 6-phenylpyrimido[4,5-b][1,4]oxazines as potent and selective acyl CoA:diacylglycerol acyltransferase 1 (DGAT1) inhibitors with in vivo efficacy in rodents.

Brian M. Fox; Kazuyuki Sugimoto; Kiyosei Iio; Atsuhito Yoshida; Jian Zhang; Kexue Li; Xiaolin Hao; Marc Labelle; Marie-Louise Smith; Steven M. Rubenstein; Guosen Ye; Dustin Mcminn; Simon Jackson; Rebekah Choi; Bei Shan; Ji Ma; Shichang Miao; Takuya Matsui; Nobuya Ogawa; Masahiro Suzuki; Akio Kobayashi; Hidekazu Ozeki; Chihiro Okuma; Yukihito Ishii; Daisuke Tomimoto; Noboru Furakawa; Masahiro Tanaka; Mutsuyoshi Matsushita; Mitsuru Takahashi; Takashi Inaba

The discovery and optimization of a series of acyl CoA:diacylglycerol acyltransferase 1 (DGAT1) inhibitors based on a pyrimido[4,5-b][1,4]oxazine scaffold is described. The SAR of a moderately potent HTS hit was investigated resulting in the discovery of phenylcyclohexylacetic acid 1, which displayed good DGAT1 inhibitory activity, selectivity, and PK properties. During preclinical toxicity studies a metabolite of 1 was observed that was responsible for elevating the levels of liver enzymes ALT and AST. Subsequently, analogues were synthesized to preclude the formation of the toxic metabolite. This effort resulted in the discovery of spiroindane 42, which displayed significantly improved DGAT1 inhibition compared to 1. Spiroindane 42 was well tolerated in rodents in vivo, demonstrated efficacy in an oral triglyceride uptake study in mice, and had an acceptable safety profile in preclinical toxicity studies.


Bioorganic & Medicinal Chemistry Letters | 2013

Discovery and optimization of arylsulfonyl 3-(pyridin-2-yloxy)anilines as novel GPR119 agonists.

Jian Zhang; An-Rong Li; Ming Yu; Yingcai Wang; Jiang Zhu; Frank Kayser; Julio C. Medina; Karen Siegler; Marion Conn; Bei Shan; Mark P. Grillo; John Eksterowicz; Peter Coward; Jiwen Liu

We describe the discovery of a series of arylsulfonyl 3-(pyridin-2-yloxy)anilines as GPR119 agonists derived from compound 1. Replacement of the three methyl groups in 1 with metabolically stable moieties led to the identification of compound 34, a potent and efficacious GPR119 agonist with improved pharmacokinetic (PK) properties.

Collaboration


Dive into the Bei Shan's collaboration.

Researchain Logo
Decentralizing Knowledge