Bekir Ülker
University of Bonn
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bekir Ülker.
Science | 2007
Qian-Hua Shen; Yusuke Saijo; Stefan Mauch; Christoph Biskup; Stéphane Bieri; Beat Keller; Hikaru Seki; Bekir Ülker; Imre E. Somssich; Paul Schulze-Lefert
Plant immune responses are triggered by pattern recognition receptors that detect conserved pathogen-associated molecular patterns (PAMPs) or by resistance (R) proteins recognizing isolate-specific pathogen effectors. We show that in barley, intracellular mildew A (MLA) R proteins function in the nucleus to confer resistance against the powdery mildew fungus. Recognition of the fungal avirulence A10 effector by MLA10 induces nuclear associations between receptor and WRKY transcription factors. The identified WRKY proteins act as repressors of PAMP-triggered basal defense. MLA appears to interfere with the WRKY repressor function, thereby de-repressing PAMP-triggered basal defense. Our findings reveal a mechanism by which these polymorphic immune receptors integrate distinct pathogen signals.
Planta | 2007
Bekir Ülker; M. Shahid Mukhtar; Imre E. Somssich
Regulatory proteins play critical roles in controlling the kinetics of various cellular processes during the entire life span of an organism. Leaf senescence, an integral part of the plant developmental program, is fine-tuned by a complex transcriptional regulatory network ensuring a successful switch to the terminal life phase. To expand our understanding on how transcriptional control coordinates leaf senescence, we characterized AtWRKY70, a gene encoding a WRKY transcription factor that functions as a negative regulator of developmental senescence. To gain insight into the interplay of senescence and plant defense signaling pathways, we employed a collection of mutants, allowing us to specifically define the role of AtWRKY70 in the salicylic acid-mediated signaling cascades and to further dissect the cross-talk of signal transduction pathways during the onset of senescence in Arabidopsis thaliana. Our results provide strong evidence that AtWRKY70 influences plant senescence and defense signaling pathways. These studies could form the basis for further unraveling of these two complex interlinked regulatory networks.
Plant Methods | 2006
Elke Logemann; Rainer P. Birkenbihl; Bekir Ülker; Imre E. Somssich
BackgroundThe Agrobacterium vacuum (Bechtold et al 1993) and floral-dip (Clough and Bent 1998) are very efficient methods for generating transgenic Arabidopsis plants. These methods allow plant transformation without the need for tissue culture. Large volumes of bacterial cultures grown in liquid media are necessary for both of these transformation methods. This limits the number of transformations that can be done at a given time due to the need for expensive large shakers and limited space on them. Additionally, the bacterial colonies derived from solid media necessary for starting these liquid cultures often fail to grow in such large volumes. Therefore the optimum stage of plant material for transformation is often missed and new plant material needs to be grown.ResultsTo avoid problems associated with large bacterial liquid cultures, we investigated whether bacteria grown on plates are also suitable for plant transformation. We demonstrate here that bacteria grown on plates can be used with similar efficiency for transforming plants even after one week of storage at 4°C. This makes it much easier to synchronize Agrobacterium and plants for transformation. DNA gel blot analysis was carried out on the T1 plants surviving the herbicide selection and demonstrated that the surviving plants are indeed transgenic.ConclusionThe simplified method works as efficiently as the previously reported protocols and significantly reduces the workload, cost and time. Additionally, the protocol reduces the risk of large scale contaminations involving GMOs. Most importantly, many more independent transformations per day can be performed using this modified protocol.
Plant Journal | 2009
Heather Knight; Sarah G. Mugford; Bekir Ülker; Dahai Gao; Glenn Thorlby; Marc R. Knight
The sfr6-1 mutant of Arabidopsis thaliana was identified previously on the basis of its failure to undergo acclimation to freezing temperatures following exposure to low positive temperatures. This failure is attributed to a defect in the pathway leading to cold on-regulated (COR) gene expression via CBF (C-box binding factor) transcription factors. We identified a region of chromosome 4 containing SFR6 by positional mapping. Fine mapping of the sfr6-1 mutation proved impossible as the locus resides very close to the centromere. Therefore, we screened 380 T-DNA lines with insertions in genes within the large region to which sfr6-1 mapped. This resulted in the identification of two further mutant alleles of SFR6 (sfr6-2 and sfr6-3); like the original sfr6-1 mutation, these disrupt freezing tolerance and COR gene expression. To determine the protein sequence, we cloned an SFR6 cDNA based on the predicted coding sequence, but this offered no indication as to the mechanism by which SFR6 acts. The SFR6 gene itself is not strongly regulated by cold, thus discounting regulation of SFR6 activity at the transcriptional level. We show that over-expression of CBF1 or CBF2 transcription factors, which constitutively activate COR genes in the wild-type, cannot do so in sfr6-1. We demonstrate that CBF protein accumulates to wild-type levels in response to cold in sfr6-1. These results indicate a role for the SFR6 protein in the CBF pathway -downstream of CBF translation. The fact that the SFR6 protein is targeted to the nucleus may suggest a direct role in modulating gene expression.
Plant Methods | 2005
Kenneth W. Berendzen; Iain Searle; Dean Ravenscroft; Csaba Koncz; Alfred Batschauer; George Coupland; Imre E. Somssich; Bekir Ülker
BackgroundMany established PCR-based approaches in plant molecular biology rely on lengthy and expensive methods for isolation of nucleic acids. Although several rapid DNA isolation protocols are available, they have not been tested for simultaneous RNA isolation for RT-PCR applications. In addition, traditional map-based cloning technologies often use ill-proportioned marker regions even when working with the model plant Arabidopsis thaliana, where the availability of the full genome sequence can now be exploited for the creation of a high-density marker systems.ResultsWe designed a high-density polymorphic marker set between two frequently used ecotypes. This new polymorphic marker set allows size separation of PCR products on agarose gels and provides an initial resolution of 10 cM in linkage mapping experiments, facilitated by a rapid plant nucleic acid extraction protocol using minimal amounts of A. thaliana tissue. Using this extraction protocol, we have also characterized segregating T-DNA insertion mutations. In addition, we have shown that our rapid nucleic acid extraction protocol can also be used for monitoring transcript levels by RT-PCR amplification. Finally we have demonstrated that our nucleic acid isolation method is also suitable for other plant species, such as tobacco and barley.ConclusionTo facilitate high-throughput linkage mapping and other genomic applications, our nucleic acid isolation protocol yields sufficient quality of DNA and RNA templates for PCR and RT-PCR reactions, respectively. This new technique requires considerably less time compared to other purification methods, and in combination with a new polymorphic PCR marker set dramatically reduces the workload required for linkage mapping of mutations in A. thaliana utilizing crosses between Col-0 and Landsberg erecta (Ler) ecotypes.
Planta | 2014
Franziska Fichtner; Bekir Ülker
Recently, the use of programmable DNA-binding proteins such as ZFP/ZFNs, TALE/TALENs and CRISPR/Cas has produced unprecedented advances in gene targeting and genome editing in prokaryotes and eukaryotes. These advances allow researchers to specifically alter genes, reprogram epigenetic marks, generate site-specific deletions and potentially cure diseases. Unlike previous methods, these precision genetic modification techniques (PGMs) are specific, efficient, easy to use and economical. Here we discuss the capabilities and pitfalls of PGMs and highlight the recent, exciting applications of PGMs in molecular biology and crop genetic engineering. Further improvement of the efficiency and precision of PGM techniques will enable researchers to precisely alter gene expression and biological/chemical pathways, probe gene function, modify epigenetic marks and improve crops by increasing yield, quality and tolerance to limiting biotic and abiotic stress conditions.
Scientific Reports | 2015
Carl Maximilian Hommelsheim; Lamprinos Frantzeskakis; Mengmeng Huang; Bekir Ülker
Designer transcription-activator like effectors (TALEs) is a promising technology and made it possible to edit genomes with higher specificity. Such specific engineering and gene regulation technologies are also being developed using RNA-binding proteins like PUFs and PPRs. The main feature of TALEs, PUFs and PPRs is their repetitive DNA/RNA-binding domains which have single nucleotide binding specificity. Available kits today allow researchers to assemble these repetitive domains in any combination they desire when generating TALEs for gene targeting and editing. However, PCR amplifications of such repetitive DNAs are highly problematic as these mostly fail, generating undesired artifact products or deletions. Here we describe the molecular mechanisms leading to these artifacts. We tested our models also in plasmid templates containing one copy versus two copies of GFP-coding sequence arranged as either direct or inverted repeats. Some limited solutions in amplifying repetitive DNA regions are described.
The Plant Cell | 2012
Bekir Ülker; Carl Maximilian Hommelsheim; Tobias Berson; Stefan Thomas; Balakumaran Chandrasekar; Ahmet Can Olcay; Kenneth W. Berendzen; Lamprinos Frantzeskakis
A widely used approach for assessing genome instability in plants makes use of somatic homologous recombination (SHR) reporter lines. Here, we review the published characteristics and uses of SHR lines. We found a lack of detailed information on these lines and a lack of sufficient evidence that they report only homologous recombination. We postulate that instead of SHR, these lines might be reporting a number of alternative stress-induced stochastic events known to occur at transcriptional, posttranscriptional, and posttranslational levels. We conclude that the reliability and usefulness of the somatic homologous recombination reporter lines requires revision. Thus, more detailed information about these reporter lines is needed before they can be used with confidence to measure genome instability, including the complete sequences of SHR constructs, the genomic location of reporter genes and, importantly, molecular evidence that reconstituted gene expression in these lines is indeed a result of somatic recombination.
Genetics and Genomics of the Brassicaceae | 2011
Bekir Ülker; Bernd Weisshaar
Having many characteristics of an ideal experimental system, Arabidopsis thaliana became a very important model system for flowering plants. Its completed genome sequence data provided scientists the first fundamental tool towards understanding its genome structure and genes that it possess. There are more than 33,000 predicted genes in Arabidopsis and this number is increasing as novel methods develop and our understanding of genome organization and regulation expands. Reverse genetics that aim to reveal the functions of all Arabidopsis genes and the related resources were next most important tools that plant scientists needed. Numerous consortia were formed to supply scientists with such resources and tools necessary to determine the functions of Arabidopsis genes. Thanks to these international community efforts, now there are around 426,000 independent T-DNA/transposon insertion lines representing near saturation of all genes in Arabidopsis available for the research community. Besides insertion lines, several other sophisticated technologies and resources crucial for large-scale gene function studies in Arabidopsis were also developed. In this chapter, we discuss most of these important reverse genetics resources for gene function analysis.
Current Opinion in Plant Biology | 2004
Bekir Ülker; Imre E. Somssich