Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Belkacem Messaoudi is active.

Publication


Featured researches published by Belkacem Messaoudi.


The Journal of Neuroscience | 2004

Learning Modulation of Odor-Induced Oscillatory Responses in the Rat Olfactory Bulb: A Correlate of Odor Recognition?

Claire Martin; Rémi Gervais; Etienne Hugues; Belkacem Messaoudi; Nadine Ravel

In the first relay of information processing, the olfactory bulb (OB), odors are known to generate specific spatial patterns of activity. Recently, in freely behaving rats, we demonstrated that learning modulated oscillatory activity in local field potential (LFP), in response to odors, in both β (15-40 Hz) and γ (60-90 Hz) bands. The present study further characterized this odor-induced oscillatory activity with emphasis on its spatiotemporal distribution over the olfactory bulb and on its relationship with improvement of behavioral performances along training. For that purpose, LFPs were simultaneously recorded from four locations in the OB in freely moving rats performing an olfactory discrimination task. Electrodes were chronically implanted near relay neurons in the mitral cell body layer. Time-frequency methods were used to extract signal characteristics (amplitude, frequency, and time course) in the two frequency bands. Before training, odor presentation produced, on each site, a power decrease in γ oscillations and a weak but significant increase in power of β oscillations (∼25 Hz). When the training was achieved, these two phenomena were amplified. Interestingly, the β oscillatory response showed several significant differences between the anterodorsal and posteroventral regions of the OB. In addition, clear-cut β responses occurred in the signal as soon as animals began to master the task. As a whole, our results point to the possible functional importance of β oscillatory activity in the mammalian OB, particularly in the context of olfactory learning.


European Journal of Neuroscience | 2006

Learning-induced oscillatory activities correlated to odour recognition: a network activity

Claire Martin; Rémi Gervais; Belkacem Messaoudi; Nadine Ravel

In trained behaving rats, the expression of a prominent beta oscillatory activity in the olfactory system was previously identified as a correlate of odour recognition. The aim of the present study was to assess the putative role of a functional coupling between the olfactory bulb (OB) and higher structures in this activity. We performed a unilateral inactivation of the medial part of the olfactory peduncle by lidocaine infusion. Inactivation deprived the OB from most of its centrifugal afferences, including feedback connections from the piriform cortex (PC) while sparing the ascending fibres from the OB to higher cortical structures. This treatment reduced the amplitude of odour‐induced oscillatory beta responses both in OB and PC. In parallel, gamma activity classically observed in these two structures during spontaneous activity displayed a strong enhancement. Results suggest that odour‐induced oscillatory response could be the emergent feature of an olfactory functional network set up through learning.


The Journal of Neuroscience | 2009

The Way an Odor Is Experienced during Aversive Conditioning Determines the Extent of the Network Recruited during Retrieval: A Multisite Electrophysiological Study in Rats

Julie Chapuis; Samuel Garcia; Belkacem Messaoudi; Marc Thévenet; Guillaume Ferreira; Rémi Gervais; Nadine Ravel

Recent findings have revealed the importance of orthonasal and retronasal olfaction in food memory, especially in conditioned odor aversion (COA); however, little is known about the dynamics of the cerebral circuit involved in the recognition of an odor as a toxic food signal and whether the activated network depends on the way (orthonasal vs retronasal) the odor was first experienced. In this study, we mapped the modulations of odor-induced oscillatory activities through COA learning using multisite recordings of local field potentials in behaving rats. During conditioning, orthonasal odor alone or associated with ingested odor was paired with immediate illness. For all animals, COA retrieval was assessed by orthonasal smelling only. Both types of conditioning induced similarly strong COA. Results pointed out (1) a predictive correlation between the emergence of powerful beta (15–40 Hz) activity and the behavioral expression of COA and (2) a differential network distribution of this beta activity according to the way the animals were exposed to the odor during conditioning. Indeed, for both types of conditioning, the aversive behavior was predicted by the emergence of a strong beta oscillatory activity in response to the odor in the olfactory bulb, piriform cortex, orbitofrontal cortex, and basolateral amygdala. This network was selectively extended to the infralimbic and insular cortices when the odor was ingested during acquisition. These differential networks could participate in different food odor memory; these results are discussed in line with recent behavioral results that indicate that COA can be formed over long odor-illness delays only if the odor is ingested.


Journal of Physiology-paris | 2004

Learning-induced modulation of oscillatory activities in the mammalian olfactory system: The role of the centrifugal fibres

Claire Martin; Rémi Gervais; Pascal Chabaud; Belkacem Messaoudi; Nadine Ravel

In the mammalian olfactory system, oscillations related to odour representation have been described in field potential activities. Previous results showed that in olfactory bulb (OB) of awake rats engaged in an olfactory learning, odour presentation produced a decrease of oscillations in gamma frequency range (60-90 Hz) associated with a power increase in beta frequency range (15-40 Hz). This response pattern was strongly amplified in trained animals. The aim of this work was twofold: whether learning also induces similar changes in OB target structures and whether such OB response depends on its centrifugal inputs. Local field potentials (LFPs) were recorded through chronically implanted electrodes in the OB, piriform and enthorhinal cortices of freely moving rats performing an olfactory discrimination. Oscillatory activities characteristics (amplitude, frequency and time-course) were extracted in beta and gamma range by a wavelet analysis. First, we found that odour induced beta oscillatory activity was present not only in the OB, but also in the other olfactory structures. In each recording site, characteristics of the beta oscillatory responses were dependent of odour, structure and learning level. Unilateral section of the olfactory peduncle was made before training, and LFPs were symmetrically recorded in the two bulbs all along the acquisition of the learning task. Data showed that deprivation of centrifugal feedback led to an increase of spontaneous gamma activity. Moreover, under this condition olfactory learning was no longer associated with the typical large beta band. As a whole, learning modulation of the beta oscillatory response in olfactory structures may reflect activity of a distributed functional network involved in odour representation.


Frontiers in Behavioral Neuroscience | 2011

The RUB Cage: Respiration–Ultrasonic Vocalizations–Behavior Acquisition Setup for Assessing Emotional Memory in Rats

Chloé Hegoburu; Kiseko Shionoya; Samuel Garcia; Belkacem Messaoudi; Marc Thévenet; Anne-Marie Mouly

In animals, emotional memory is classically assessed through pavlovian fear conditioning in which a neutral novel stimulus (conditioned stimulus) is paired with an aversive unconditioned stimulus. After conditioning, the conditioned stimulus elicits a fear response characterized by a wide range of behavioral and physiological responses. Despite the existence of this large repertoire of responses, freezing behavior is often the sole parameter used for quantifying fear response, thus limiting emotional memory appraisal to this unique index. Interestingly, respiratory changes and ultrasonic vocalizations (USV) can occur during fear response, yet very few studies investigated the link between these different parameters and freezing. The aim of the present study was to design an experimental setup allowing the simultaneous recording of respiration, USV, and behavior (RUB cage), and the offline synchronization of the collected data for fine-grain second by second analysis. The setup consisted of a customized plethysmograph for respiration monitoring, equipped with a microphone capturing USV, and with four video cameras for behavior recording. In addition, the bottom of the plethysmograph was equipped with a shock-floor allowing foot-shock delivery, and the top received tubing for odor presentations. Using this experimental setup we first described the characteristics of respiration and USV in different behaviors and emotional states. Then we monitored these parameters during contextual fear conditioning and showed that they bring complementary information about the animals anxiety state and the strength of aversive memory. The present setup may be valuable in providing a clearer appraisal of the physiological and behavioral changes that occur during acquisition as well as retrieval of emotional memory.


Learning & Memory | 2008

Neonatal odor-shock conditioning alters the neural network involved in odor fear learning at adulthood

Yannick Sevelinges; Regina M. Sullivan; Belkacem Messaoudi; Anne-Marie Mouly

Adult learning and memory functions are strongly dependent on neonatal experiences. We recently showed that neonatal odor-shock learning attenuates later life odor fear conditioning and amygdala activity. In the present work we investigated whether changes observed in adults can also be observed in other structures normally involved, namely olfactory cortical areas. For this, pups were trained daily from postnatal (PN) 8 to 12 in an odor-shock paradigm, and retrained at adulthood in the same task. (14)C 2-DG autoradiographic brain mapping was used to measure training-related activation in amygdala cortical nucleus (CoA), anterior (aPCx), and posterior (pPCx) piriform cortex. In addition, field potentials induced in the three sites in response to paired-pulse stimulation of the olfactory bulb were recorded in order to assess short-term inhibition and facilitation in these structures. Attenuated adult fear learning was accompanied by a deficit in 2-DG activation in CoA and pPCx. Moreover, electrophysiological recordings revealed that, in these sites, the level of inhibition was lower than in control animals. These data indicate that early life odor-shock learning produces changes throughout structures of the adult learning circuit that are independent, at least in part, from those involved in infant learning. Moreover, these enduring effects were influenced by the contingency of the infant experience since paired odor-shock produced greater disruption of adult learning and its supporting neural pathway than unpaired presentations. These results suggest that some enduring effects of early life experience are potentiated by contingency and extend beyond brain areas involved in infant learning.


PLOS ONE | 2012

A Physiological Increase of Insulin in the Olfactory Bulb Decreases Detection of a Learned Aversive Odor and Abolishes Food Odor-Induced Sniffing Behavior in Rats

Pascaline Aimé; Chloé Hegoburu; Tristan Jaillard; Cyril Degletagne; Samuel Garcia; Belkacem Messaoudi; Marc Thévenet; Anne Lorsignol; Claude Duchamp; Anne-Marie Mouly; Andrée Karyn Julliard

Insulin is involved in multiple regulatory mechanisms, including body weight and food intake, and plays a critical role in metabolic disorders such as obesity and diabetes. An increasing body of evidence indicates that insulin is also involved in the modulation of olfactory function. The olfactory bulb (OB) contains the highest level of insulin and insulin receptors (IRs) in the brain. However, a role for insulin in odor detection and sniffing behavior remains to be elucidated. Using a behavioral paradigm based on conditioned olfactory aversion (COA) to isoamyl-acetate odor, we demonstrated that an intracerebroventricular (ICV) injection of 14 mU insulin acutely decreased olfactory detection of fasted rats to the level observed in satiated animals. In addition, whereas fasted animals demonstrated an increase in respiratory frequency upon food odor detection, this effect was absent in fasted animals receiving a 14 mU insulin ICV injection as well as in satiated animals. In parallel, we showed that the OB and plasma insulin levels were increased in satiated rats compared to fasted rats, and that a 14 mU insulin ICV injection elevated the OB insulin level of fasted rats to that of satiated rats. We further quantified insulin receptors (IRs) distribution and showed that IRs are preferentially expressed in the caudal and lateral parts of the main OB, with the highest labeling found in the mitral cells, the main OB projection neurons. Together, these data suggest that insulin acts on the OB network to modulate olfactory processing and demonstrate that olfactory function is under the control of signals involved in energy homeostasis regulation and feeding behaviors.


Behavioral Neuroscience | 2007

Importance of Retronasal and Orthonasal Olfaction for Odor Aversion Memory in Rats

Julie Chapuis; Belkacem Messaoudi; Guillaume Ferreira; Nadine Ravel

The role of odors in food memory formation, especially for aversions, has long been considered secondary to taste. However, the importance of odor ingestion in conditioned odor aversion (COA) has recently challenged this assumption (B. M. Slotnick, F. Westbrook, & F. M. C. Darling, 1997). The aim of the present study was to evaluate the respective role of orthonasal and retronasal olfactory experience in COA acquisition, long-term retention, extinction, and spontaneous recovery. To this end, the odor was presented either close to the drinking spout (orthonasal stimulation) or close to and mixed with the drinking water (eliciting both orthonasal and retronasal stimulation). The authors brought evidence that odor ingestion was crucial for COA acquisition, especially when odor presentation and gastric malaise were separated by long delays. On the contrary, once formed, a distal (orthonasal) odor recognition was sufficient for COA to be retrieved. COA was odor specific and long lasting (more than 50 days). Moreover, results brought evidence for a spontaneous recovery of odor aversion tested 57 days after its extinction.


Journal of Neuroscience Methods | 2009

A computer-assisted odorized hole-board for testing olfactory perception in mice

Nathalie Mandairon; Sébastien Sultan; Nolwen Rey; Florence Kermen; Mélissa Moreno; Germain U. Busto; Vincent Farget; Belkacem Messaoudi; Marc Thévenet; Anne Didier

The present paper describes a behavioral setup, designed and built in our laboratory, allowing the systematic and automatic recording of performances in a large number of olfactory behavioral tests. This computerized monitoring system has the capability of measuring different aspects of olfactory function in mice using different paradigms including threshold evaluation, generalization tasks, habituation/dishabituation, olfactory associative learning, short-term olfactory memory with or without a spatial component, and olfactory preferences. In this paper, we first describe the hole-board apparatus and its software and then give the experimental results obtained using this system. We demonstrate that one single, easy-to-run experimental setup is a powerful tool for the study of olfactory behavior in mice that has many advantages and broad applications.


PLOS ONE | 2011

Reshaping of bulbar odor response by nasal flow rate in the rat.

Emmanuelle Courtiol; Corine Amat; Marc Thévenet; Belkacem Messaoudi; Samuel Garcia; Nathalie Buonviso

Background The impact of respiratory dynamics on odor response has been poorly studied at the olfactory bulb level. However, it has been shown that sniffing in the behaving rodent is highly dynamic and varies both in frequency and flow rate. Bulbar odor response could vary with these sniffing parameter variations. Consequently, it is necessary to understand how nasal airflow can modify and shape odor response at the olfactory bulb level. Methodology and Principal Findings To assess this question, we used a double cannulation and simulated nasal airflow protocol on anesthetized rats to uncouple nasal airflow from animal respiration. Both mitral/tufted cell extracellular unit activity and local field potentials (LFPs) were recorded. We found that airflow changes in the normal range were sufficient to substantially reorganize the response of the olfactory bulb. In particular, cellular odor-evoked activities, LFP oscillations and spike phase-locking to LFPs were strongly modified by nasal flow rate. Conclusion Our results indicate the importance of reconsidering the notion of odor coding as odor response at the bulbar level is ceaselessly modified by respiratory dynamics.

Collaboration


Dive into the Belkacem Messaoudi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rémi Gervais

Claude Bernard University Lyon 1

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claire Martin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Alexandra Gros

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Alexandra Veyrac

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Marina Allerborn

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Serge Laroche

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge