Belma Giray
Hacettepe University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Belma Giray.
Toxicology Letters | 2001
Belma Giray; Aylin Gürbay; Filiz Hincal
Considering that the involvement of reactive oxygen species (ROS) has been implicated in the toxicity of various pesticides, this study was designed to investigate the possibility of oxidative stress induction by cypermethrin, a Type II pyrethroid. Either single (170 mg/kg) or repeated (75 mg/kg per day for 5 days) oral administration of cypermethrin was found to produce significant oxidative stress in cerebral and hepatic tissues of rats, as was evident by the elevation of the level of thiobarbituric acid reactive substances (TBARS) in both tissues, either 4 or 24 h after treatment. Much higher changes were observed in liver, increasing from a level of 60% at 4 h up to nearly 4 times the control at 24 h for single dose. Reduced levels (up to 20%) of total glutathione (total GSH), and elevation of conjugated dienes ( approximately 60% in liver by single dose at 4 h) also indicated the presence of an oxidative insult. Glutathione-S-transferase (GST) activity, however, did not differ from control values for any dose or at any time point in cerebral and hepatic tissues. Pretreatment of rats with allopurinol (100 mg/kg, ip) or Vitamin E (100 mg/kg per day, ig, for 3 days and a dose of 40 mg/kg on the 4th day) provided significant protection against the elevation of TBARS levels in cerebral and hepatic tissues, induced by single high dose of oral cypermethrin administration within 4 h. Thus, the results suggest that cypermethrin exposure of rats results in free radical-mediated tissue damage, as indicated by elevated cerebral and hepatic lipid peroxidation, which was prevented by allopurinol and Vitamin E.
Pediatrics | 2010
Erdem Durmaz; Elif Özmert; Pinar Erkekoglu; Belma Giray; Orhan Derman; Filiz Hincal; Kadriye Yurdakök
OBJECTIVE: Several untoward health effects of phthalates, which are a group of industrial chemicals with many commercial uses including personal-care products and plastic materials, have been defined. The most commonly used, di-(2-ethylhexyl)-phthalate (DEHP), is known to have antiandrogenic or estrogenic effects or both. Mono-(2-ethylhexyl)-phthalate (MEHP) is the main metabolite of DEHP. In this study, we aimed to determine the plasma DEHP and MEHP levels in pubertal gynecomastia cases. PATIENTS AND METHODS: The study group comprised 40 newly diagnosed pubertal gynecomastia cases who were admitted to Hacettepe University Ihsan Doğramacı Childrens Hospital. The control group comprised 21 age-matched children without gynecomastia or other endocrinologic disorder. Plasma DEHP and MEHP levels were measured by using high-performance liquid chromatography. Serum hormone levels were determined in some pubertal gynecomastia cases according to the physicians evaluation. RESULTS: Plasma DEHP and MEHP levels were found to be statistically significantly higher in the pubertal gynecomastia group compared with the control group (P < .001) (DEHP, 4.66 ± 1.58 and 3.09 ± 0.90 μg/mL, respectively [odds ratio: 2.77 (95% confidence interval: 1.48–5.21)]; MEHP, 3.19 ± 1.41 and 1.37 ± 0.36 μg/mL [odds ratio: 24.76 (95% confidence interval: 3.5–172.6)]). There was a statistically significant correlation between plasma DEHP and MEHP levels (r: 0.58; P < .001). In the pubertal gynecomastia group, no correlation could be determined between plasma DEHP and MEHP levels and any of the hormone levels. CONCLUSIONS: DEHP, which has antiandrogenic or estrogenic effects, may be an etiologic factor in pubertal gynecomastia. These results may pioneer larger-scale studies on the etiologic role of DEHP in pubertal gynecomastia.
Biological Trace Element Research | 1995
Filiz Hincal; Aylin Gürbay; Belma Giray
The oxidant stress-inducing effects of endosulfan, a chlorinated hydrocarbon insecticide of the cyclodiene group, have been examined following ig administration of single and repeated doses. A single dose of 30 mg/kg (∼30% LD50) endosulfan significantly (p<0.001) increased the TBARS and, hence, the lipid peroxidation in cerebral and hepatic tissues of rats. Administration of endosulfan with doses of 10 or 15 mg/kg/d for 5 d has also induced lipid peroxidation significantly (p<0.05). The same doses caused a significant alteration in glutathione redox status of cerebral and hepatic tissues, where total glutathione and oxidized glutathione were measured by an enzymatic cycling procedure. Selenium levels were also determined and compared with controls. With repeated doses, oxidant stress was more pronounced in cerebral tissue, where endosulfan shows a GABA-antagonistic activity. The possible relationship between the neurotoxicity of endosulfan and its oxidant stress-inducing effect was discussed.
Experimental and Toxicologic Pathology | 2013
S. Sezin Palabiyik; Pinar Erkekoglu; N. Dilara Zeybek; Murat Kizilgun; Dilek Ertoy Baydar; Gonul Sahin; Belma Giray
This study was designed to investigate the possible protective effect of lycopene against the renal toxic effects of OTA. Male Sprague-Dawley rats (<200 g, n=6) were treated with OTA (0.5 mg/kg/day) and/or lycopene (5 mg/kg/day) by gavage for 14 days. Histopathological examinations were performed and apoptotic cell death in both cortex and medulla was evaluated by TUNEL assay. Besides, biochemical parameters and activities of renal antioxidant selenoenzymes [glutathione peroxidase 1 (GPx1), thioredoxin reductase (TrxR)], catalase (CAT), superoxide dismutase (SOD); concentrations of total glutathione (GSH), and malondialdehyde (MDA) levels were measured. OTA treatment was found to induce oxidative stress in rat kidney, as evidenced by marked decreases in CAT (35%) activity and GSH levels (44%) as well as increase in SOD activity (22%) vs control group. Furthermore, TUNEL analysis revealed a significant increase in the number of TUNEL-positive cells in cortex (49%) and medulla (75%) in OTA administrated group compared to control (p<0.05). Lycopene supplementation with OTA increased GPx1 activity and GSH levels, and decreased apoptotic cell death in both cortex and medulla vs. control. The results of this study showed that at least one of the mechanisms underlying the renal toxicity of OTA is oxidative stress and apoptosis is the major form of cell death caused by OTA. Besides, our data indicate that the natural antioxidant lycopene might be partially protective against OTA-induced nephrotoxicity and oxidative stress in rat.
Free Radical Biology and Medicine | 2010
Pinar Erkekoglu; Walid Rachidi; Viviana De Rosa; Belma Giray; Alain Favier; Filiz Hincal
Selenium is an essential cofactor in the key enzymes involved in cellular antioxidant defense. It plays a critical role in testis and reproduction and regulates DNA damage within the prostate. Phthalates are ubiquitous environmental contaminants that cause alterations in endocrine and spermatogenic functions in animals. The objective of this study was to investigate the cytotoxicity and genotoxicity potentials of di(2-ethylhexyl)phthalate (DEHP), the most widely used phthalate and its primary toxic metabolite mono(2-ethylhexyl)phthalate (MEHP), and their effects on the antioxidant balance in the LNCaP human prostate adenocarcinoma cell line. Protection by selenium supplementation with either sodium selenite (SS, 30 nM) or selenomethionine (SM, 10 microM) was also investigated. Both DEHP (3mM) and MEHP (3 microM) caused significant decreases in cell viability; altered antioxidant status, particularly decreasing the GPx1 activity; and induced DNA damage as measured by the alkaline comet assay. Selenium supplementation was highly protective against cytotoxicity, partially prevented genotoxicity, and restored the antioxidant status. The results of this study suggested that the underlying mechanism of cytotoxicity and resulting disturbances produced by DEHP or MEHP was an an oxidative stress process and/or an effect on the expression of antioxidant enzymes, and accentuated the importance of selenium status, particularly with respect to the high probability of phthalate exposures and their adverse effects.
Experimental and Toxicologic Pathology | 2004
Ülkü Ündeğer; Belma Giray; A. Faruk Zorlu; Kamil Öge; Nurçen Baçaran
Melatonin is an endogenously produced antioxidant with radioprotective actions while ionizing radiation is a well-known cytotoxic and mutagenic agent of which the biological results are attributable to its free radical producing effects. The effect of melatonin on the DNA strand breakage and lipid peroxidation induced by ionizing radiation in the rat brain were investigated in order to clarify its radioprotective ability. The DNA strand breakage in rat brain exposed to 1000 cGy ionizing radiation was assessed by alkaline single cell gel electrophoresis and the lipid peroxidation was evaluated by measuring thiobarbituric acid reactive substances (TBARS) concentrations. A significant increase in DNA damage (p < 0.05) and TBARS concentrations (p < 0.01) was found in the radiation treated rat brain. Pre-treatment of rats with intraperitoneal doses of 100 mg/kg melatonin provided a significant decrease in the DNA strand breakage and lipid peroxidation. Our results indicate that melatonin can protect brain cells from oxidative damage induced by ionizing radiation.
Environmental Toxicology | 2014
Pinar Erkekoglu; Belma Giray; Walid Rachidi; Isabelle Hininger-Favier; Anne-Marie Roussel; Alain Favier; Filiz Hincal
Di(ethylhexyl)phthalate (DEHP), the most widely used plasticizer, was investigated to determine whether an oxidative stress process was one of the underlying mechanisms for its testicular toxicity potential. To evaluate the effects of selenium (Se), status on the toxicity of DEHP was further objective of this study, as Se is known to play a critical role in testis and in the modulation of intracellular redox equilibrium. Se deficiency was produced in 3‐weeks‐old Sprague–Dawley rats feeding them ≤0.05 mg Se /kg diet for 5 weeks, and Se‐supplementation group was on 1 mg Se/kg diet. DEHP‐treated groups received 1000 mg/kg dose by gavage during the last 10 days of the feeding period. Activities of antioxidant selenoenzymes [glutathione peroxidase 1 (GPx1), glutathione peroxidase 4 (GPx4), thioredoxin reductase (TrxR)], catalase (CAT), superoxide dismutase (SOD), and glutathione S‐transferase (GST); concentrations of reduced glutathione (GSH), oxidized glutathione (GSSG), and thus the GSH/GSSG redox ratio; and thiobarbituric acid reactive substance (TBARS) levels were measured. DEHP was found to induce oxidative stress in rat testis, as evidenced by significant decrease in GSH/GSSG redox ratio (>10‐fold) and marked increase in TBARS levels, and its effects were more pronounced in Se‐deficient rats with ∼18.5‐fold decrease in GSH/GSSG redox ratio and a significant decrease in GPx4 activity, whereas Se supplementation was protective by providing substantial elevation of redox ratio and reducing the lipid peroxidation. These findings emphasized the critical role of Se as an effective redox regulator and the importance of Se status in protecting testicular tissue from the oxidant stressor activity of DEHP.
Drug and Chemical Toxicology | 2011
Pinar Erkekoglu; N. Dilara Zeybek; Belma Giray; Esin Asan; Josiane Arnaud; Filiz Hincal
Phthalates are abundantly produced plasticizers, and di(ethylhexyl) phthalate (DEHP) is the most widely used derivative in various consumer products and medical devices. Animal studies show that DEHP and various other phthalates cause reproductive and developmental toxicity. Although the evidences are limited, it seems reasonable that DEHP may have a potential for similar adverse effects in humans. Such concerns are increasing, particularly for the developing reproductive system of male infants and children. By taking into account the essentiality of selenium (Se) in testicular structure and functions and the high prevalence of inadequate Se intake in various part of the world, this study was designed to investigate the testicular toxicity of DEHP in Se-deficient male rats and to examine the possible preventive effects of Se supplementation on phthalate toxicity. Se deficiency was generated by feeding 3-week-old Sprague-Dawley rats with a ≤0.05 Se mg/kg diet for 5 weeks. Supplementation groups were on a 1 mg Se/kg diet, and DEHP-treated groups received a 1,000 mg/kg dose by gavage during the last 10 days of the feeding period. Testicular histopathology, sperm count and motility, and sperm morphology were examined, and plasma levels of sex hormones were measured. Toxicity and antiandrogenic effects of DEHP were evidenced by disturbed testicular histology and spermatogenesis, diminished testosterone, leutinizing hormone (LH) and follicle stimulating hormone (FSH) levels, and sperm motility. The effects of DEHP were much more pronounced in Se-deficient rats, whereas Se supplementation was found to be protective, reflecting its regulating role in cellular redox equilibrium.
Food and Chemical Toxicology | 2011
Pinar Erkekoglu; W. Rachidi; O.G. Yüzügüllü; Belma Giray; Mehmet Ozturk; A. Favier; Filiz Hincal
This study was designed to investigate the hypothesis that the toxic effects of di(2-ethylhexyl)phthalate (DEHP), the most abundantly used plasticizer and ubiquitous environmental contaminant that cause alterations in endocrine and spermatogenic functions in animals is mediated through the induction of reactive oxygen species (ROS) and activation of nuclear p53 and p21 proteins in LNCaP human prostate adenocarcinoma cell line. Protective effects of two selenocompounds, sodium selenite (SS) and selenomethionine (SM) were also examined. It was demonstrated that 24 h exposure of the cells to 3 mM DEHP or its main metabolite, mono(2-ethylhexyl)phthalate (MEHP, 3 μM) caused strongly amplified production of ROS. Both SS (30 nM) and SM (10 μM) supplementations reduced ROS production, and p53 and p21 activation that induced significantly only by MEHP-exposure. The overall results of this study indicated that the induction of oxidative stress is one of the important mechanisms underlying the toxicity of DEHP and this is mainly through the effects of the metabolite, MEHP. Generated data also emphasized the critical role of Se in modulation of intracellular redox status, implicating the importance of the appropriate Se status in cellular response against testicular toxicity of phthalates.
Toxicon | 2010
Pinar Erkekoglu; Suna Sabuncuoğlu; Sevtap Aydın; Gönül Şahin; Belma Giray
This study has been undertaken to investigate the regional and seasonal variability in ochratoxin A (OTA) exposure of healthy population living in Black Sea and Mediterranean regions of Turkey by measuring serum OTA concentrations. The mean serum concentrations of OTA were determined to be 0.137 ng/mL (0.0306-0.887 ng/mL) and 0.312 ng/mL (0.028-1.496 ng/mL) in all samples for winter and summer, respectively by enzyme-linked immunosorbent assay (ELISA). The differences between mean values of OTA in all serum samples collected in summer and winter were statistically significant. The highest OTA concentration was determined in the children living in Black Sea Region in summer. The mean daily intake levels of OTA in all samples were estimated as 0.182 ng/kg b.w./day and 0.408 ng/kg b.w./day in winter and summer, respectively. The results showed that the mean serum concentrations of OTA in healthy population in both regions were found not to be exceeded 1 ng/mL in agreement with the distribution reported in most European countries and that the daily intake levels of OTA were calculated below the tolerable daily intake levels given by regulatory authorities. However, overall results suggest that Turkish population living in these regions is continuously exposed to OTA and that the exposure levels are also elevated in summer period compared to winter.