Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Filiz Hincal is active.

Publication


Featured researches published by Filiz Hincal.


Toxicology Letters | 2001

Cypermethrin-induced oxidative stress in rat brain and liver is prevented by Vitamin E or allopurinol

Belma Giray; Aylin Gürbay; Filiz Hincal

Considering that the involvement of reactive oxygen species (ROS) has been implicated in the toxicity of various pesticides, this study was designed to investigate the possibility of oxidative stress induction by cypermethrin, a Type II pyrethroid. Either single (170 mg/kg) or repeated (75 mg/kg per day for 5 days) oral administration of cypermethrin was found to produce significant oxidative stress in cerebral and hepatic tissues of rats, as was evident by the elevation of the level of thiobarbituric acid reactive substances (TBARS) in both tissues, either 4 or 24 h after treatment. Much higher changes were observed in liver, increasing from a level of 60% at 4 h up to nearly 4 times the control at 24 h for single dose. Reduced levels (up to 20%) of total glutathione (total GSH), and elevation of conjugated dienes ( approximately 60% in liver by single dose at 4 h) also indicated the presence of an oxidative insult. Glutathione-S-transferase (GST) activity, however, did not differ from control values for any dose or at any time point in cerebral and hepatic tissues. Pretreatment of rats with allopurinol (100 mg/kg, ip) or Vitamin E (100 mg/kg per day, ig, for 3 days and a dose of 40 mg/kg on the 4th day) provided significant protection against the elevation of TBARS levels in cerebral and hepatic tissues, induced by single high dose of oral cypermethrin administration within 4 h. Thus, the results suggest that cypermethrin exposure of rats results in free radical-mediated tissue damage, as indicated by elevated cerebral and hepatic lipid peroxidation, which was prevented by allopurinol and Vitamin E.


Pediatrics | 2010

Plasma Phthalate Levels in Pubertal Gynecomastia

Erdem Durmaz; Elif Özmert; Pinar Erkekoglu; Belma Giray; Orhan Derman; Filiz Hincal; Kadriye Yurdakök

OBJECTIVE: Several untoward health effects of phthalates, which are a group of industrial chemicals with many commercial uses including personal-care products and plastic materials, have been defined. The most commonly used, di-(2-ethylhexyl)-phthalate (DEHP), is known to have antiandrogenic or estrogenic effects or both. Mono-(2-ethylhexyl)-phthalate (MEHP) is the main metabolite of DEHP. In this study, we aimed to determine the plasma DEHP and MEHP levels in pubertal gynecomastia cases. PATIENTS AND METHODS: The study group comprised 40 newly diagnosed pubertal gynecomastia cases who were admitted to Hacettepe University Ihsan Doğramacı Childrens Hospital. The control group comprised 21 age-matched children without gynecomastia or other endocrinologic disorder. Plasma DEHP and MEHP levels were measured by using high-performance liquid chromatography. Serum hormone levels were determined in some pubertal gynecomastia cases according to the physicians evaluation. RESULTS: Plasma DEHP and MEHP levels were found to be statistically significantly higher in the pubertal gynecomastia group compared with the control group (P < .001) (DEHP, 4.66 ± 1.58 and 3.09 ± 0.90 μg/mL, respectively [odds ratio: 2.77 (95% confidence interval: 1.48–5.21)]; MEHP, 3.19 ± 1.41 and 1.37 ± 0.36 μg/mL [odds ratio: 24.76 (95% confidence interval: 3.5–172.6)]). There was a statistically significant correlation between plasma DEHP and MEHP levels (r: 0.58; P < .001). In the pubertal gynecomastia group, no correlation could be determined between plasma DEHP and MEHP levels and any of the hormone levels. CONCLUSIONS: DEHP, which has antiandrogenic or estrogenic effects, may be an etiologic factor in pubertal gynecomastia. These results may pioneer larger-scale studies on the etiologic role of DEHP in pubertal gynecomastia.


Biological Trace Element Research | 1995

Induction of lipid peroxidation and alteration of glutathione redox status by endosulfan

Filiz Hincal; Aylin Gürbay; Belma Giray

The oxidant stress-inducing effects of endosulfan, a chlorinated hydrocarbon insecticide of the cyclodiene group, have been examined following ig administration of single and repeated doses. A single dose of 30 mg/kg (∼30% LD50) endosulfan significantly (p<0.001) increased the TBARS and, hence, the lipid peroxidation in cerebral and hepatic tissues of rats. Administration of endosulfan with doses of 10 or 15 mg/kg/d for 5 d has also induced lipid peroxidation significantly (p<0.05). The same doses caused a significant alteration in glutathione redox status of cerebral and hepatic tissues, where total glutathione and oxidized glutathione were measured by an enzymatic cycling procedure. Selenium levels were also determined and compared with controls. With repeated doses, oxidant stress was more pronounced in cerebral tissue, where endosulfan shows a GABA-antagonistic activity. The possible relationship between the neurotoxicity of endosulfan and its oxidant stress-inducing effect was discussed.


Free Radical Biology and Medicine | 2001

Microsomal metabolism of ciprofloxacin generates free radicals.

Aylin Gürbay; Brigitte Gonthier; Denis Daveloose; Alain Favier; Filiz Hincal

Ciprofloxacin (CPFX) is a widely used fluoroquinolone antibiotic with a broad spectrum of activity. However, clinical experience has shown a possible incidence of undesirable adverse effects including gastrointestinal, skin, hepatic, and central nervous system (CNS) functions, and phototoxicity. Several examples in the literature data indicate that free radical formation might play a role in the mechanism of some of these adverse effects, including phototoxicity and cartilage defects. The purpose of this study is to investigate free radical formation during the metabolism of CPFX in hepatic microsomes using electron spin resonance (ESR) spectroscopy and spin trapping technique. We then investigate the effects of a cytochrome P450 inhibitor, SKF 525A, Trolox, and ZnCl2 on CPFX-induced free radical production. Our results show that CPFX induces free radical production in a dose- and time-dependent manner. The generation of 4-POBN/radical adduct is dependent on the presence of NADPH, CPFX, and active microsomes. Furthermore, free radical production is completely inhibited by SKF 525A, Trolox, or ZnCl2.


Human & Experimental Toxicology | 2002

Cytotoxicity in ciprofloxacin-treated human fibroblast cells and protection by vitamin E.

Gürbay A; Garrel C; Osman M; Richard Mj; Alain Favier; Filiz Hincal

Quinolones (Qs) were shown to have cytotoxic effects in various cell lines including human carcinoma cells; however, mechanism of these effects was not fully understood. To investigate the possibility of the involvement of an oxidative stress induction in this mechanism of action, we examined viability of human fibroblast cells exposed to a Q antibiotic, ciprofloxacin (CPFX), and measured lipid peroxidation and total glutathione (GSH) levels, and activities of catalase (Cat), superoxide dismutases (SODs), glutathione peroxidase (GPx). The effects of vitamin E pretreatment on those parameters were also examined. Our results showed that the effect of CPFX on the viability of the cells, as determined by neutral red uptake assay, was time dependent. Cytotoxicity was not observed in the concentration range of 0.0129–0.387 mM CPFX when the cells were incubated for 24 hours. However, significant level of cytotoxicity was observed at concentrations 0.129 and 0.194 mM, and ¶ 0.129 mM, following 48 and 72 hours of exposure, respectively. When the cells were exposed to 0.194 mM CPFX for 48 hours, the level of lipid peroxidation increased and the content of total GSH decreased significantly; activities of total SOD, Mn SOD and CuZn SOD did not change; the decrease observed in the activity of Cat was not significant; and the activity of GPx was highly variable. Vitamin E pretreatment of the cells provided significant protection against CPFX-induced cytotoxicity; lowered the level of lipid peroxidation significantly, but increased the total GSH content only moderately; no change was observed in the activities of Cat and total SOD, but a significant increase in Mn SOD and a significant decrease in Cu Zn SOD were noticed. These results suggested that CPFX-induced cytotoxicity on human fibroblast cell cultures is related to oxidative stress, and vitamin E pretreatment can afford a protection.


Free Radical Biology and Medicine | 2010

Protective effect of selenium supplementation on the genotoxicity of di(2-ethylhexyl)phthalate and mono(2-ethylhexyl)phthalate treatment in LNCaP cells.

Pinar Erkekoglu; Walid Rachidi; Viviana De Rosa; Belma Giray; Alain Favier; Filiz Hincal

Selenium is an essential cofactor in the key enzymes involved in cellular antioxidant defense. It plays a critical role in testis and reproduction and regulates DNA damage within the prostate. Phthalates are ubiquitous environmental contaminants that cause alterations in endocrine and spermatogenic functions in animals. The objective of this study was to investigate the cytotoxicity and genotoxicity potentials of di(2-ethylhexyl)phthalate (DEHP), the most widely used phthalate and its primary toxic metabolite mono(2-ethylhexyl)phthalate (MEHP), and their effects on the antioxidant balance in the LNCaP human prostate adenocarcinoma cell line. Protection by selenium supplementation with either sodium selenite (SS, 30 nM) or selenomethionine (SM, 10 microM) was also investigated. Both DEHP (3mM) and MEHP (3 microM) caused significant decreases in cell viability; altered antioxidant status, particularly decreasing the GPx1 activity; and induced DNA damage as measured by the alkaline comet assay. Selenium supplementation was highly protective against cytotoxicity, partially prevented genotoxicity, and restored the antioxidant status. The results of this study suggested that the underlying mechanism of cytotoxicity and resulting disturbances produced by DEHP or MEHP was an an oxidative stress process and/or an effect on the expression of antioxidant enzymes, and accentuated the importance of selenium status, particularly with respect to the high probability of phthalate exposures and their adverse effects.


Environmental Toxicology | 2014

Effects of di(2‐ethylhexyl)phthalate on testicular oxidant/antioxidant status in selenium‐deficient and selenium‐supplemented rats

Pinar Erkekoglu; Belma Giray; Walid Rachidi; Isabelle Hininger-Favier; Anne-Marie Roussel; Alain Favier; Filiz Hincal

Di(ethylhexyl)phthalate (DEHP), the most widely used plasticizer, was investigated to determine whether an oxidative stress process was one of the underlying mechanisms for its testicular toxicity potential. To evaluate the effects of selenium (Se), status on the toxicity of DEHP was further objective of this study, as Se is known to play a critical role in testis and in the modulation of intracellular redox equilibrium. Se deficiency was produced in 3‐weeks‐old Sprague–Dawley rats feeding them ≤0.05 mg Se /kg diet for 5 weeks, and Se‐supplementation group was on 1 mg Se/kg diet. DEHP‐treated groups received 1000 mg/kg dose by gavage during the last 10 days of the feeding period. Activities of antioxidant selenoenzymes [glutathione peroxidase 1 (GPx1), glutathione peroxidase 4 (GPx4), thioredoxin reductase (TrxR)], catalase (CAT), superoxide dismutase (SOD), and glutathione S‐transferase (GST); concentrations of reduced glutathione (GSH), oxidized glutathione (GSSG), and thus the GSH/GSSG redox ratio; and thiobarbituric acid reactive substance (TBARS) levels were measured. DEHP was found to induce oxidative stress in rat testis, as evidenced by significant decrease in GSH/GSSG redox ratio (>10‐fold) and marked increase in TBARS levels, and its effects were more pronounced in Se‐deficient rats with ∼18.5‐fold decrease in GSH/GSSG redox ratio and a significant decrease in GPx4 activity, whereas Se supplementation was protective by providing substantial elevation of redox ratio and reducing the lipid peroxidation. These findings emphasized the critical role of Se as an effective redox regulator and the importance of Se status in protecting testicular tissue from the oxidant stressor activity of DEHP.


Free Radical Research | 2012

Low doses of selenium specifically stimulate the repair of oxidative DNA damage in LNCaP prostate cancer cells

de Rosa; Erkekoğlu P; Forestier A; Favier A; Filiz Hincal; Alan M. Diamond; Douki T; Rachidi W

Epidemiological studies have demonstrated an inverse relationship between selenium (Se) intake and cancer incidence and/or mortality. However, the molecular mechanisms underlying the cancer chemopreventive activity of Se compounds remain largely unknown. The objective of this study was to investigate the effect of low doses of Se on the stimulation of DNA repair systems in response to four different qualities of DNA damage. P53-proficient LNCaP human prostate adenocarcinoma cells were grown either untreated or in the presence of low concentrations of two Se compounds (30° nM sodium selenite, or 10μM selenomethionine) and exposed to UVA, H2O2, methylmethane sulfonate (MMS) or UVC. Cell viability as well as DNA damage induction and repair were evaluated by the alkaline Comet assay. Overall, Se was shown to be a very potent protector against cell toxicity and genotoxicity induced by oxidative stress (UVA or H2O2) but not from the agents that induce other types of deleterious lesions (MMS or UVC). Furthermore, Se-treated cells exhibited increased oxidative DNA repair activity, indicating a novel mechanism of Se action. Therefore, the benefits of Se could be explained by a combination of antioxidant activity, the reduction in DNA damage and the enhancement of oxidative DNA repair capacity.


Drug and Chemical Toxicology | 2011

Reproductive toxicity of di(2-ethylhexyl) phthalate in selenium-supplemented and selenium-deficient rats

Pinar Erkekoglu; N. Dilara Zeybek; Belma Giray; Esin Asan; Josiane Arnaud; Filiz Hincal

Phthalates are abundantly produced plasticizers, and di(ethylhexyl) phthalate (DEHP) is the most widely used derivative in various consumer products and medical devices. Animal studies show that DEHP and various other phthalates cause reproductive and developmental toxicity. Although the evidences are limited, it seems reasonable that DEHP may have a potential for similar adverse effects in humans. Such concerns are increasing, particularly for the developing reproductive system of male infants and children. By taking into account the essentiality of selenium (Se) in testicular structure and functions and the high prevalence of inadequate Se intake in various part of the world, this study was designed to investigate the testicular toxicity of DEHP in Se-deficient male rats and to examine the possible preventive effects of Se supplementation on phthalate toxicity. Se deficiency was generated by feeding 3-week-old Sprague-Dawley rats with a ≤0.05 Se mg/kg diet for 5 weeks. Supplementation groups were on a 1 mg Se/kg diet, and DEHP-treated groups received a 1,000 mg/kg dose by gavage during the last 10 days of the feeding period. Testicular histopathology, sperm count and motility, and sperm morphology were examined, and plasma levels of sex hormones were measured. Toxicity and antiandrogenic effects of DEHP were evidenced by disturbed testicular histology and spermatogenesis, diminished testosterone, leutinizing hormone (LH) and follicle stimulating hormone (FSH) levels, and sperm motility. The effects of DEHP were much more pronounced in Se-deficient rats, whereas Se supplementation was found to be protective, reflecting its regulating role in cellular redox equilibrium.


Food and Chemical Toxicology | 2011

Induction of ROS, p53, p21 in DEHP- and MEHP-exposed LNCaP cells-protection by selenium compounds

Pinar Erkekoglu; W. Rachidi; O.G. Yüzügüllü; Belma Giray; Mehmet Ozturk; A. Favier; Filiz Hincal

This study was designed to investigate the hypothesis that the toxic effects of di(2-ethylhexyl)phthalate (DEHP), the most abundantly used plasticizer and ubiquitous environmental contaminant that cause alterations in endocrine and spermatogenic functions in animals is mediated through the induction of reactive oxygen species (ROS) and activation of nuclear p53 and p21 proteins in LNCaP human prostate adenocarcinoma cell line. Protective effects of two selenocompounds, sodium selenite (SS) and selenomethionine (SM) were also examined. It was demonstrated that 24 h exposure of the cells to 3 mM DEHP or its main metabolite, mono(2-ethylhexyl)phthalate (MEHP, 3 μM) caused strongly amplified production of ROS. Both SS (30 nM) and SM (10 μM) supplementations reduced ROS production, and p53 and p21 activation that induced significantly only by MEHP-exposure. The overall results of this study indicated that the induction of oxidative stress is one of the important mechanisms underlying the toxicity of DEHP and this is mainly through the effects of the metabolite, MEHP. Generated data also emphasized the critical role of Se in modulation of intracellular redox status, implicating the importance of the appropriate Se status in cellular response against testicular toxicity of phthalates.

Collaboration


Dive into the Filiz Hincal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Walid Rachidi

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alain Favier

Joseph Fourier University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Murat Kizilgun

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge