Ben E. K. Sugerman
Goucher College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ben E. K. Sugerman.
Science | 2006
Ben E. K. Sugerman; Barbara Ercolano; M. J. Barlow; A. G. G. M. Tielens; Geoffrey C. Clayton; Albert A. Zijlstra; Margaret M. Meixner; Angela Karen Speck; Tim M. Gledhill; Nino Panagia; Martin Cohen; Karl D. Gordon; Martin Meyer; Joanna Fabbri; Janet. E. Bowey; Douglas L. Welch; Michael W. Regan; Robert C. Kennicutt
We present late-time optical and mid-infrared observations of the Type II supernova 2003gd in the galaxy NGC 628. Mid-infrared excesses consistent with cooling dust in the ejecta are observed 499 to 678 days after outburst and are accompanied by increasing optical extinction and growing asymmetries in the emission-line profiles. Radiative-transfer models show that up to 0.02 solar masses of dust has formed within the ejecta, beginning as early as 250 days after outburst. These observations show that dust formation in supernova ejecta can be efficient and that massive-star supernovae could have been major dust producers throughout the history of the universe.
The Astrophysical Journal | 2010
Jennifer E. Andrews; Joseph S. Gallagher; Geoffrey C. Clayton; Ben E. K. Sugerman; J. P. Chatelain; J. Clem; Douglas L. Welch; M. J. Barlow; Barbara Ercolano; Joanna Fabbri; R. Wesson; Margaret M. Meixner
SN 2007od exhibits characteristics that have rarely been seen in a Type IIP supernova (SN). Optical V-band photometry reveals a very steep brightness decline between the plateau and nebular phases of ~4.5 mag, likely due to SN 2007od containing a low mass of 56Ni. The optical spectra show an evolution from normal Type IIP with broad Hα emission, to a complex, four-component Hα emission profile exhibiting asymmetries caused by dust extinction after day 232. This is similar to the spectral evolution of the Type IIn SN 1998S, although no early-time narrow (~200 km s–1) Hα component was present in SN 2007od. In both SNe, the intermediate-width Hα emission components are thought to arise in the interaction between the ejecta and its circumstellar medium (CSM). SN 2007od also shows a mid-infrared excess due to new dust. The evolution of the Hα profile and the presence of the mid-IR excess provide strong evidence that SN 2007od formed new dust before day 232. Late-time observations reveal a flattening of the visible light curve. This flattening is a strong indication of the presence of a light echo, which likely accounts for much of the broad, underlying Hα component seen at late times. We believe that the multi-peaked Hα emission is consistent with the interaction of the ejecta with a circumstellar ring or torus (for the inner components at ±1500 km s–1) and a single blob or cloud of circumstellar material out of the plane of the CSM ring (for the outer component at –5000 km s–1). The most probable location for the formation of new dust is in the cool dense shell created by the interaction between the expanding ejecta and its CSM. Monte Carlo radiative transfer modeling of the dust emission from SN 2007od implies that up to ~4 × 10–4 M ☉ of new dust has formed. This is similar to the amounts of dust formed in other core-collapse supernovae such as SNe 1999em, 2004et, and 2006jc.
The Astrophysical Journal | 2008
Natasza Siodmiak; Margaret M. Meixner; Toshiya Ueta; Ben E. K. Sugerman; G. C. Van de Steene; R. Szczerba
The results from a Hubble Space T elescope (HST ) snapshot survey of post-AGB objects are shown. The aim of the survey is to complement existing HST images of PPN and to connect various types of nebulosities with physical and chemical properties of their central stars. Nebulosities are detected in 15 of 33 sources. Images and photometric and geometric measurements are presented. For sources with nebulosities we see a morphological bifurcation into two groups, DUPLEX and SOLE, as previous studies have found. We find further support to the previous results suggesting that this dichotomy is caused by a difference in optical thickness of the dust shell. The remaining 18 sources are classified as stellar post-AGB objects, because our observations indicate a lack of nebulosity. We show that some stellar sources may in fact be DUPLEX or SOLE based on their infrared colors. The cause of the differences among the groups are investigated. We discuss some evidence suggesting that high progenitor-mass AGB stars tend to become DUPLEX post-AGB objects. Intermediate progenitormass AGB stars tend to be SOLE post-AGB objects. Most of the stellar sources probably have low mass progenitors and do not seem to develop nebulosities during the post-AGB phase and therefore do not become planetary nebulae. Subject headings: planetary nebulae: general — stars: AGB and post-AGB — stars: circumstellar matter — stars: mass loss — reflection nebulaeThe results of a Hubble Space Telescope (HST) snapshot survey of post-AGB objects are shown. The aim of the survey is to complement existing HST images of protoplanetary nebulae and to connect various types of nebulosities with the physical and chemical properties of their central stars. Nebulosities are detected in 15 of 33 sources. Images and photometric and geometric measurements are presented. For sources with nebulosities we see a morphological bifurcation into two groups, DUPLEX and SOLE, as previous studies have found. We find further support for the previous results, suggesting that this dichotomy is caused by a difference in the optical thickness of the dust shell. The remaining 18 sources are classified as stellar post-AGB objects, because our observations indicate a lack of nebulosity. We show that some stellar sources may in fact be DUPLEX or SOLE objects based on their infrared colors. The causes of the differences among the groups are investigated. We discuss some evidence suggesting that high progenitor mass AGB stars tend to become DUPLEX post-AGB objects and intermediate progenitor mass AGB stars tend to become SOLE post-AGB objects. Most of the stellar sources probably have low-mass progenitors and do not seem to develop nebulosities during the post-AGB phase; therefore, they do not become planetary nebulae.
The Astrophysical Journal | 2010
Ori Dosovitz Fox; Roger A. Chevalier; Eli Dwek; Michael F. Skrutskie; Ben E. K. Sugerman; Jarron M. Leisenring
This paper presents late-time near-infrared and Spitzer mid-infrared photometric and spectroscopic observations of warm dust in the Type IIn SN 2005ip in NGC 2906. The spectra show evidence for two dust components with different temperatures. Spanning the peak of the thermal emission, these observations provide strong constraints on the dust mass, temperature, and luminosity, which serve as critical diagnostics for disentangling the origin and heating mechanism of each component. The results suggest that the warmer dust has a mass of {approx}5 x 10{sup -4} M{sub sun}, originates from newly formed dust in the ejecta, or possibly the cool, dense shell, and is continuously heated by the circumstellar interaction. By contrast, the cooler component likely originates from a circumstellar shock echo that forms from the heating of a large, pre-existing dust shell {approx}0.01-0.05 M{sub sun} by the late-time circumstellar interaction. The progenitor wind velocity derived from the blue edge of the He I 1.083 {mu}m P Cygni profile indicates a progenitor eruption likely formed this dust shell {approx}100 years prior to the supernova explosion, which is consistent with a Luminous Blue Variable progenitor star.
The Astronomical Journal | 2008
W. B. Sparks; Howard E. Bond; Misty Cracraft; Zolt Levay; Lisa A. Crause; Michael A. Dopita; Arne A. Henden; Ulisse Munari; Nino Panagia; Sumner G. Starrfield; Ben E. K. Sugerman; R. Mark Wagner; Richard L. White
Following the outburst of the unusual variable star V838 Monocerotis in 2002, a spectacular light echo appeared. A light echo provides the possibility of direct geometric distance determination, because it should contain a ring of highly linearly polarized light at a linear radius of ct, where t is the time since the outburst. We present imaging polarimetry of the V838 Mon light echo, obtained in 2002 and 2005 with the Advanced Camera for Surveys on board the Hubble Space Telescope, which confirms the presence of the highly polarized ring. Based on detailed modeling that takes into account the outburst light curve, the paraboloidal echo geometry, and the physics of dust scattering and polarization, we find a distance of 6.1 ± 0.6 kpc. The error is dominated by the systematic uncertainty in the scattering angle of maximum linear polarization, taken to be θmax = 90° ± 5°. The polarimetric distance agrees remarkably well with a distance of 6.2 ± 1.2 kpc obtained from the entirely independent method of main-sequence fitting to a sparse star cluster associated with V838 Mon. At this distance, V838 Mon at maximum light had MV −9.8, making it temporarily one of the most luminous stars in the Local Group. Our validation of the polarimetric method offers promise for measurement of extragalactic distances using supernova light echoes.
The Astrophysical Journal | 2003
Eli Michael; Richard McCray; Roger A. Chevalier; Alexei V. Filippenko; Peter Lundqvist; Peter M. Challis; Ben E. K. Sugerman; Stephen S. Lawrence; Chun J. S. Pun; Peter Marcus Garnavich; Robert P. Kirshner; A P S Crotts; Claes Fransson; Weidong Li; Nino Panagia; Matthew R Phillips; Brian Paul Schmidt; George Sonneborn; Nicholas B. Suntzeff; Lifan Wang; J. Craig Wheeler
We present two-dimensional line profiles of high-velocity (~+/-12,000 km s-1) Lyα and Hα emission from supernova remnant 1987A obtained with the Space Telescope Imaging Spectrograph between 1997 September and 2001 September (days 3869-5327 after the explosion). This emission comes from hydrogen in the debris that is excited and ionized as it passes through the remnants reverse shock. We use these profiles to measure the geometry and development of the reverse-shock surface. The observed emission is confined within ~+/-30° about the remnants equatorial plane. At the equator, the reverse shock has a radius of ~75% of the distance to the equatorial ring. We detect marginal differences (6%+/-3%) between the location of the reverse-shock front in the northeast and southwest parts of the remnant. The radius of the reverse shock surface increases for latitudes above the equator, a geometry consistent with a model in which the supernova debris expands into a bipolar nebula. Assuming that the outer supernova debris has a power-law density distribution, we can infer from the reverse-shock emission light curve an expansion rate (in the northeast part of the remnant) of 3700+/-900kms-1, consistent with the expansion velocities determined from observations in radio (Manchester et al.) and X-ray (Park et al.; Michael et al.) wavelengths. However, our most recent observation (at day 5327) suggests that the rate of increase of mass flux across the northeast sector of the reverse shock has accelerated, perhaps because of deceleration of the reverse shock caused by the arrival of a reflected shock created when the blast wave struck the inner ring. Resonant scattering within the supernova debris causes Lyα photons created at the reverse shock to be directed preferentially outward, resulting in a factor of ~5 difference in the observed brightness of the reverse shock in Lyα between the near and far sides of the remnant. Accounting for this effect, we compare the observed reverse-shock Lyα and Hα fluxes to infer the amount of interstellar extinction by dust as E(B-V)=0.17+/-0.01 mag. We also notice extinction by dust in the equatorial ring with E(B-V)~0.02-0.08 mag, which implies dust-to-gas ratios similar to that of the LMC. Since Hα photons are optically thin to scattering, the observed asymmetry in brightness of Hα from the near and far sides of the remnant represents a real asymmetry in the mass flux through the reverse shock of ~30%. We discuss future observational strategies that will permit us to further investigate the reverse-shock dynamics and resonant scattering of the Lyα line and to constrain better the extinction by dust within and in front of the remnant.
The Astrophysical Journal | 2011
Jennifer E. Andrews; Ben E. K. Sugerman; Geoffrey C. Clayton; J. S. Gallagher; M. J. Barlow; J. Clem; Barbara Ercolano; Joanna Fabbri; Margaret M. Meixner; Masaaki Otsuka; D. L. Welch; R. Wesson
SN 2007it is a bright, Type IIP supernova which shows indications of both pre-existing and newly formed dust. The visible photometry shows a bright late-time luminosity, powered by the 0.09 M ☉ of 56Ni present in the ejecta. There is also a sudden drop in optical brightness after day 339, and a corresponding brightening in the IR due to new dust forming in the ejecta. CO and SiO emission, generally thought to be precursors to dust formation, may have been detected in the mid-IR photometry of SN 2007it. The optical spectra show stronger than average [O I] emission lines and weaker than average [Ca II] lines, which may indicate a 16-27 M ☉ progenitor, on the higher end of expected Type IIP masses. Multi-component [O I] lines are also seen in the optical spectra, most likely caused by an asymmetric blob or a torus of oxygen core material being ejected during the SN explosion. Interaction with circumstellar material prior to day 540 may have created a cool dense shell between the forward and reverse shocks where new dust is condensing. At late times there is also a flattening of the visible light curve as the ejecta luminosity fades and a surrounding light echo becomes visible. Radiative transfer models of SN 2007it spectral energy distributions indicate that up to 10–4 M ☉ of new dust has formed in the ejecta, which is consistent with the amount of dust formed in other core-collapse supernovae.
Monthly Notices of the Royal Astronomical Society | 2010
R. Wesson; M. J. Barlow; Barbara Ercolano; Jennifer E. Andrews; Geoffrey C. Clayton; Joanna Fabbri; Joseph S. Gallagher; Margaret M. Meixner; Ben E. K. Sugerman; D. L. Welch; D. J. Stock
SN 2008S erupted in early 2008 in the grand design spiral galaxy NGC 6946. The progenitor was detected by Prieto et al. in Spitzer Space Telescope images taken over the four years prior to the explosion, but was not detected in deep optical images, from which they inferred a self-obscured object with a mass of about 10 Msun. We obtained Spitzer observations of SN 2008S five days after its discovery, as well as coordinated Gemini and Spitzer optical and infrared observations six months after its outburst. We have constructed radiative transfer dust models for the object before and after the outburst, using the same r^-2 density distribution of pre-existing amorphous carbon grains for all epochs and taking light-travel time effects into account for the early post-outburst epoch. We rule out silicate grains as a significant component of the dust around SN 2008S. The inner radius of the dust shell moved outwards from its pre-outburst value of 85 AU to a post-outburst value of 1250 AU, attributable to grain vaporisation by the light flash from SN 2008S. Although this caused the circumstellar extinction to decrease from Av = 15 before the outburst to 0.8 after the outburst, we estimate that less than 2% of the overall circumstellar dust mass was destroyed. The total mass-loss rate from the progenitor star is estimated to have been (0.5-1.0)x10^-4 Msun yr^-1. The derived dust mass-loss rate of 5x10^-7 Msun yr^-1 implies a total dust injection into the ISM of up to 0.01 Msun over the suggested duration of the self-obscured phase. We consider the potential contribution of objects like SN 2008S to the dust enrichment of galaxies.
The Astrophysical Journal | 2009
Jozsef Vinko; K. Sarneczky; Zoltan Balog; Stefan Immler; Ben E. K. Sugerman; Peter J. Brown; Karl Anthony Misselt; Gy. Szabó; Szilard Csizmadia; M. Kun; P. Klagyivik; Ryan J. Foley; Alexei V. Filippenko; B. Csák; L. L. Kiss
The bright Type II-plateau supernova (SN) 2004dj occurred within the young, massive stellar cluster Sandage-96 in a spiral arm of NGC 2403. New multiwavelength observations obtained with several ground-based and space-based telescopes were combined to study the radiation from Sandage-96 after SN 2004dj faded away. Sandage-96 started to dominate the flux in the optical bands starting from 2006 September (~800 days after explosion). The optical fluxes are equal to the pre-explosion ones within the observational uncertainties. An optical Keck spectrum obtained ~900 days after explosion shows the dominant blue continuum from the cluster stars shortward of 6000? ? as well as strong SN nebular emission lines redward. The integrated spectral energy distribution (SED) of the cluster has been extended into the ultraviolet region by archival XMM-Newton and new Swift observations, and compared with theoretical models. The outer parts of the cluster have been resolved by the Hubble Space Telescope, allowing the construction of a color-magnitude diagram (CMD). The fitting of the cluster SED with theoretical isochrones results in cluster ages distributed between 10 and 40 Myr, depending on the assumed metallicity and the theoretical model family. The isochrone fitting of the CMDs indicates that the resolved part of the cluster consists of stars having a bimodal age distribution: a younger population at ~10-16 Myr and an older one at ~32-100? Myr. The older population has an age distribution similar to that of the other nearby field stars. This may be explained with the hypothesis that the outskirts of Sandage-96 are contaminated by stars captured from the field during cluster formation. The young age of Sandage-96 and the comparison of its pre and postexplosion SEDs suggest 12 M prog 20 M ? as the most probable mass range for the progenitor of SN 2004dj. This is consistent with, but perhaps slightly higher than, most of the other Type II-plateau SN progenitor masses determined so far.
The Astrophysical Journal | 2011
Geoffrey C. Clayton; Ben E. K. Sugerman; S. Adam Stanford; Barbara A. Whitney; J. Honor; B. L. Babler; M. J. Barlow; Karl D. Gordon; Jennifer E. Andrews; T. R. Geballe; Howard E. Bond; O. De Marco; Warrick A. Lawson; B. Sibthorpe; G. Olofsson; E. T. Polehampton; Haley Louise Gomez; Mikako Matsuura; Peter Charles Hargrave; R. J. Ivison; R. Wesson; S. J. Leeks; B. M. Swinyard; T. Lim
In 2007, R Coronae Borealis (R CrB) went into a historically deep and long decline. In this state, the dust acts like a natural coronagraph at visible wavelengths, allowing faint nebulosity around the star to be seen. Imaging has been obtained from 0.5 to 500 μm with Gemini/GMOS, Hubble Space Telescope/WFPC2, Spitzer/MIPS, and Herschel/SPIRE. Several of the structures around R CrB are cometary globules caused by wind from the star streaming past dense blobs. The estimated dust mass of the knots is consistent with their being responsible for the R CrB declines if they form along the line of sight to the star. In addition, there is a large diffuse shell extending up to 4 pc away from the star containing cool 25 K dust that is detected all the way out to 500 μm. The spectral energy distribution of R CrB can be well fitted by a 150 AU disk surrounded by a very large diffuse envelope which corresponds to the size of the observed nebulosity. The total masses of the disk and envelope are 10–4 and 2 M ☉, respectively, assuming a gas-to-dust ratio of 100. The evidence pointing toward a white dwarf merger or a final-helium-shell flash origin for R CrB is contradictory. The shell and the cometary knots are consistent with a fossil planetary nebula. Along with the fact that R CrB shows significant lithium in its atmosphere, this supports the final-helium-shell flash. However, the relatively high inferred mass of R CrB and its high fluorine abundance support a white dwarf merger.