Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ben Fogelgren is active.

Publication


Featured researches published by Ben Fogelgren.


Cancer Research | 2005

Lysyl Oxidase Regulates Breast Cancer Cell Migration and Adhesion through a Hydrogen Peroxide–Mediated Mechanism

Stacey L. Payne; Ben Fogelgren; Angela R. Hess; Elisabeth A. Seftor; Elizabeth L. Wiley; Sheri F. T. Fong; Katalin Csiszar; Mary J.C. Hendrix; Dawn A. Kirschmann

We have previously shown that lysyl oxidase (LOX) mRNA is up-regulated in invasive breast cancer cells and that catalytically active LOX facilitates in vitro cell invasion. Here we validate our in vitro studies by showing that LOX expression is up-regulated in distant metastatic breast cancer tissues compared with primary cancer tissues. To elucidate the mechanism by which LOX facilitates cell invasion, we show that catalytically active LOX regulates in vitro motility/migration and cell-matrix adhesion formation. Treatment of the invasive breast cancer cell lines, Hs578T and MDA-MB-231, with beta-aminopropionitrile (betaAPN), an irreversible inhibitor of LOX catalytic activity, leads to a significant decrease in cell motility/migration and adhesion formation. Conversely, poorly invasive MCF-7 cells expressing LOX (MCF-7/LOX32-His) showed an increase in migration and adhesion that was reversible with the addition of betaAPN. Moreover, a decrease in activated focal adhesion kinase (FAK) and Src kinase, key proteins involved in adhesion complex turnover, was observed when invasive breast cancer cells were treated with betaAPN. Additionally, FAK and Src activation was increased in MCF-7/LOX32-His cells, which was reversible on betaAPN treatment. Hydrogen peroxide was produced as a by-product of LOX activity and the removal of hydrogen peroxide by catalase treatment in invasive breast cancer cells led to a dose-dependent loss in Src activation. These results suggest that LOX facilitates migration and cell-matrix adhesion formation in invasive breast cancer cells through a hydrogen peroxide-mediated mechanism involving the FAK/Src signaling pathway. These data show the need to target LOX for treatment of aggressive breast cancer.


Matrix Biology | 2001

A novel human lysyl oxidase-like gene (LOXL4) on chromosome 10q24 has an altered scavenger receptor cysteine rich domain

L. Asuncion; Ben Fogelgren; K.S.K. Fong; Sheri F. T. Fong; Y. Kim; Katalin Csiszar

We have identified a novel 14-exon human lysyl oxidase-like gene, LOXL4, on chromosome 10q24. The cDNA and derived amino acid sequence of LOXL4 demonstrates a conserved C-terminal region including the characteristic copper-binding site, lysyl and tyrosyl residues and a cytokine receptor-like domain. One of the four N-terminal SRCR domains contains a 13 amino acid insertion encoded by a short exon not present within the closely homologous LOXL2 and LOXL3 genes. The 3.5-kb LOXL4 mRNA is present in pancreas and testis and at lower levels in several other tissues. Fibroblasts, smooth muscle and osteosarcoma (HOS) cells express LOXL4. No expression was detected in HCT-116 and DLD-1 colon, MCF-7 breast and DU-145 prostate cancer cell lines.


Journal of Biological Chemistry | 2011

The small GTPase Cdc42 is necessary for primary ciliogenesis in renal tubular epithelial cells

Xiaofeng Zuo; Ben Fogelgren; Joshua H. Lipschutz

Primary cilia are found on many epithelial cell types, including renal tubular epithelial cells, where they participate in flow sensing. Disruption of cilia function has been linked to the pathogenesis of polycystic kidney disease. We demonstrated previously that the exocyst, a highly conserved eight-protein membrane trafficking complex, localizes to primary cilia of renal tubular epithelial cells, is required for ciliogenesis, biochemically and genetically interacts with polycystin-2 (the protein product of the polycystic kidney disease 2 gene), and, when disrupted, results in MAPK pathway activation both in vitro and in vivo. The small GTPase Cdc42 is a candidate for regulation of the exocyst at the primary cilium. Here, we demonstrate that Cdc42 biochemically interacts with Sec10, a crucial component of the exocyst complex, and that Cdc42 colocalizes with Sec10 at the primary cilium. Expression of dominant negative Cdc42 and shRNA-mediated knockdown of both Cdc42 and Tuba, a Cdc42 guanine nucleotide exchange factor, inhibit ciliogenesis in Madin-Darby canine kidney cells. Furthermore, exocyst Sec8 and polycystin-2 no longer localize to primary cilia or the ciliary region following Cdc42 and Tuba knockdown. We also show that Sec10 directly interacts with Par6, a member of the Par complex that itself directly interacts with Cdc42. Finally, we show that Cdc42 knockdown results in activation of the MAPK pathway, something observed in cells with dysfunctional primary cilia. These data support a model in which Cdc42 localizes the exocyst to the primary cilium, whereupon the exocyst then targets and docks vesicles carrying proteins necessary for ciliogenesis.


Developmental Dynamics | 2008

Misexpression of Six2 is associated with heritable frontonasal dysplasia and renal hypoplasia in 3H1 Br mice

Ben Fogelgren; Mari Kuroyama; Brandeis McBratney-Owen; Allyson A. Spence; Laura E. Malahn; Mireille K. Anawati; Chantelle Cabatbat; Vernadeth B. Alarcon; Yusuke Marikawa; Scott Lozanoff

A radiation‐induced mouse mutant, Brachyrrhine (Br), exhibits frontonasal dysplasia and renal hypoplasia, two malformations associated with deficiencies in mesenchymal condensation. The purpose of this study was to resolve the Br locus, evaluate possible candidate genes, and identify developmental defects in the mutant chondrocranium. Linkage analysis mapped the Br mutation to a critical region distal to D17Mit76, which contains only one gene, the transcription factor Six2. Sequence analysis of the Six2 gene, including 1.5 kb of the promoter, failed to reveal the Br mutation. However, homozygous Br/Br embryos showed almost complete absence of Six2 mRNA and protein in craniofacial and renal tissues while heterozygous Br/+ embryos displayed intermediate Six2 levels. Mutant embryos displayed malformations of neural crest‐derived structures of the anterior cranium where Six2 is normally expressed. These data suggest a mutation in a novel cis‐acting regulatory region inhibits Six2 expression and is associated with frontonasal dysplasia and renal hypoplasia. Developmental Dynamics 237:1767–1779, 2008.


Journal of Biological Chemistry | 2007

Lysyl Oxidase Interacts with Hormone Placental Lactogen and Synergistically Promotes Breast Epithelial Cell Proliferation and Migration

Noemi Polgar; Ben Fogelgren; J. Michael Shipley; Katalin Csiszar

Lysyl oxidase (LOX), an extracellular amine oxidase, catalyzes the cross-linking of collagen and elastin. LOX has been also shown to play an essential role in promoting the invasive and metastatic potential of breast tumor cells. However, the LOX-interacting factors in these processes are not known. In this study, we identified placental lactogen (PL), a member of the growth hormone/prolactin hormone family, as a LOX-interacting partner using yeast two-hybrid screens. PL is normally only expressed in placental syncytiotrophoblasts, but PL genes are amplified and expressed in a high percentage of invasive ductal breast carcinomas. We confirmed LOX-PL interactions using far Western and solid phase binding assays. In activity assays, PL was not a substrate or inhibitor of LOX. We further demonstrated that PL is expressed in breast tumor epithelial cells and detected LOX-PL interactions by coimmunoprecipitation in invasive breast cancer cells. In MCF-10A normal breast epithelial cells stably expressing LOX, PL, or both, LOX had no effect on cell proliferation, PL alone increased proliferation by 49%, and coexpression of LOX and PL led to a 121% increase in cell proliferation. Unlike in tumor cells, LOX did not induce a more migratory phenotype in MCF-10A cells; nor did PL. However, their coexpression resulted in a 240% increase in cell migration, suggesting that these interactions may be highly relevant to the transition of epithelial cells toward a migratory phenotype during the development and progression of breast carcinoma and a significant role for LOX-PL interactions in epithelial cell behavior.


American Journal of Physiology-renal Physiology | 2009

Deficiency in Six2 during prenatal development is associated with reduced nephron number, chronic renal failure, and hypertension in Br/+ adult mice

Ben Fogelgren; Shiming Yang; Ian C. Sharp; Odaro J. Huckstep; Wenbin Ma; Suwit J. Somponpun; Edward C. Carlson; Catherine F. T. Uyehara; Scott Lozanoff

The Br/+ mutant mouse displays decreased embryological expression of the homeobox transcription factor Six2, resulting in hertitable renal hypoplasia. The purpose of this study was to characterize the renal physiological consequences of embryonic haploinsuffiency of Six2 by analyzing renal morphology and function in the adult Br heterozygous mutant. Adult Br/+ kidneys weighed 50% less than those from wild-type mice and displayed glomerulopathy. Stereological analysis of renal glomeruli showed that Br/+ kidneys had an average of 88% fewer glomeruli than +/+ kidneys, whereas individual glomeruli in Br/+ mice maintained an average volume increase of 180% compared with normal nephrons. Immunostaining revealed increased levels of endothelin-1 (ET-1), endothelin receptors A (ET(A)) and B (ET(B)), and Na-K-ATPase were present in the dilated renal tubules of mutant mice. Physiological features of chronic renal failure (CRF) including elevated mean arterial pressure, increased plasma creatinine, and dilute urine excretion were measured in Br/+ mutant mice. Electron microscopy of the Br/+ glomeruli revealed pathological alterations such as hypercellularity, extracellular matrix accumulation, and a thick irregular glomerular basement membrane. These results indicate that adult Br/+ mice suffer from CRF associated with reduced nephron number and renal hypoplasia, as well as glomerulopathy. Defects are associated with embryological deficiencies of Six2, suggesting that proper levels of this protein during nephrogenesis are critical for normal glomerular development and adult renal function.


Journal of Biological Chemistry | 2005

Drosophila Lysyl Oxidases Dmloxl-1 and Dmloxl-2 Are Differentially Expressed and the Active DmLOXL-1 Influences Gene Expression and Development

Janos Molnar; Zsuzsanna Újfaludi; Sheri F. T. Fong; John A. Bollinger; Girma Waro; Ben Fogelgren; David M. Dooley; Matyas Mink; Katalin Csiszar

Mammalian lysyl oxidase (LOX) is essential for the catalysis of lysyl-derived cross-links in fibrillar collagens and elastin in the extracellular matrix and has also been implicated in cell motility, differentiation, and tumor cell invasion. The active LOX has been shown to translocate to the nuclei of smooth muscle cells and regulate chromatin structure and transcription. It is difficult to interpret the role of the LOX protein as it is co-expressed with other members of the LOX amine oxidase family in most mammalian cells. To investigate the function of the LOX proteins, we have characterized the Drosophila lysyl oxidases Dmloxl-1 and Dmloxl-2. We present the gene, domain structure, and expression pattern of Dmloxl-1 and Dmloxl-2 during development. In early development, only Dmloxl-1 was expressed, which allowed functional studies. We have expressed Dmloxl-1 in S2 cells and determined that it is a catalytically active enzyme, inhibited by β-amino-proprionitrile (BAPN), a specific LOX inhibitor. We localized DmLOXL-1 in the nuclei in embryos and in adult salivary gland cells in the nuclei, cytoplasm, and cell surface, using immunostaining and a DmLOXL-1 antibody. To address the biological function of Dmloxl-1, we raised larvae under BAPN inhibitory conditions and over-expressed Dmloxl-1 in transgenic Drosophila. DmLOXL-1 inhibition resulted in developmental delay and a shift in sex ratio; over-expression in the wm4 variegating strain increased drosopterin production, demonstrating euchromatinization. Our previous data on the transcriptional down-regulation of seven ribosomal genes and the glue gene under inhibitory conditions and the current results collectively support a nuclear role for Dmloxl-1 in euchromatinization and gene regulation.


Molecular Biology of the Cell | 2016

Arl13b and the exocyst interact synergistically in ciliogenesis

Cecília Seixas; Soo Young Choi; Noemi Polgar; Nicole L. Umberger; Michael P. East; Xiaofeng Zuo; Hugo Moreiras; Rania Ghossoub; Alexandre Benmerah; Richard A. Kahn; Ben Fogelgren; Tamara Caspary; Joshua H. Lipschutz; Duarte C. Barral

A novel Arl13b effector is identified. Sec8 and Sec5 exocyst subunits are shown to interact with Arl13b in a GTP-dependent manner. This interaction is synergistic in phenotypes caused by impaired ciliogenesis during zebrafish development. Similar to Sec10, Arl13b depletion in mouse kidneys inhibits ciliogenesis and leads to the formation of cysts.


American Journal of Physiology-renal Physiology | 2010

Exocyst Sec10 protects epithelial barrier integrity and enhances recovery following oxidative stress, by activation of the MAPK pathway

Kwon Moo Park; Ben Fogelgren; Xiaofeng Zuo; Jinu Kim; Daniel C. Chung; Joshua H. Lipschutz

Cell-cell contacts are essential for epithelial cell function, and disruption is associated with pathological conditions including ischemic kidney injury. We hypothesize that the exocyst, a highly-conserved eight-protein complex that targets secretory vesicles carrying membrane proteins, is involved in maintaining renal epithelial barrier integrity. Accordingly, increasing exocyst expression in renal tubule cells may protect barrier function from oxidative stress resulting from ischemia and reperfusion (I/R) injury. When cultured on plastic, Madin-Darby canine kidney (MDCK) cells overexpressing Sec10, a central exocyst component, formed domes showing increased resistance to hydrogen peroxide (H2O2). Transepithelial electric resistance (TER) of Sec10-overexpressing MDCK cells grown on Transwell filters was higher than in control MDCK cells, and the rate of TER decrease following H2O2 treatment was less in Sec10-overexpressing MDCK cells compared with control MDCK cells. After removal of H2O2, TER returned to normal more rapidly in Sec10-overexpressing compared with control MDCK cells. In collagen culture MDCK cells form cysts, and H2O2 treatment damaged Sec10-overexpressing MDCK cell cysts less than control MDCK cell cysts. The MAPK pathway has been shown to protect animals from I/R injury. Levels of active ERK, the final MAPK pathway step, were higher in Sec10-overexpressing compared with control MDCK cells. U0126 inhibited ERK activation, exacerbated the H2O2-induced decrease in TER and cyst disruption, and delayed recovery of TER following H2O2 removal. Finally, in mice with renal I/R injury, exocyst expression decreased early and returned to normal concomitant with functional recovery, suggesting that the exocyst may be involved in the recovery following I/R injury.


PLOS ONE | 2015

Urothelial Defects from Targeted Inactivation of Exocyst Sec10 in Mice Cause Ureteropelvic Junction Obstructions.

Ben Fogelgren; Noemi Polgar; Vanessa H. Lui; Amanda J. Lee; Kadee-Kalia Tamashiro; Josephine Andrea Napoli; Chad B. Walton; Xiaofeng Zuo; Joshua H. Lipschutz

Most cases of congenital obstructive nephropathy are the result of ureteropelvic junction obstructions, and despite their high prevalence, we have a poor understanding of their etiology and scarcity of genetic models. The eight-protein exocyst complex regulates polarized exocytosis of intracellular vesicles in a large variety of cell types. Here we report generation of a conditional knockout mouse for Sec10, a central component of the exocyst, which is the first conditional allele for any exocyst gene. Inactivation of Sec10 in ureteric bud-derived cells using Ksp1.3-Cre mice resulted in severe bilateral hydronephrosis and complete anuria in newborns, with death occurring 6–14 hours after birth. Sec10FL/FL;Ksp-Cre embryos developed ureteropelvic junction obstructions between E17.5 and E18.5 as a result of degeneration of the urothelium and subsequent overgrowth by surrounding mesenchymal cells. The urothelial cell layer that lines the urinary tract must maintain a hydrophobic luminal barrier again urine while remaining highly stretchable. This barrier is largely established by production of uroplakin proteins that are transported to the apical surface to establish large plaques. By E16.5, Sec10FL/FL;Ksp-Cre ureter and pelvic urothelium showed decreased uroplakin-3 protein at the luminal surface, and complete absence of uroplakin-3 by E17.5. Affected urothelium at the UPJ showed irregular barriers that exposed the smooth muscle layer to urine, suggesting this may trigger the surrounding mesenchymal cells to overgrow the lumen. Findings from this novel mouse model show Sec10 is critical for the development of the urothelium in ureters, and provides experimental evidence that failure of this urothelial barrier may contribute to human congenital urinary tract obstructions.

Collaboration


Dive into the Ben Fogelgren's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katalin Csiszar

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Xiaofeng Zuo

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Scott Lozanoff

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Amanda J. Lee

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith S. K. Fong

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Soo Young Choi

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Kwon Moo Park

Kyungpook National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge