Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ben Thijs is active.

Publication


Featured researches published by Ben Thijs.


Inorganic Chemistry | 2008

Carboxyl-Functionalized Task-Specific Ionic Liquids for Solubilizing Metal Oxides

Peter Nockemann; Ben Thijs; Tatjana N. Parac-Vogt; Kristof Van Hecke; Luc Van Meervelt; Bernard Tinant; Ingo Hartenbach; Thomas Schleid; Vu Thi Ngan; Minh Tho Nguyen; Koen Binnemans

Imidazolium, pyridinium, pyrrolidinium, piperidinium, morpholinium, and quaternary ammonium bis(trifluoromethylsulfonyl)imide salts were functionalized with a carboxyl group. These ionic liquids are useful for the selective dissolution of metal oxides and hydroxides. Although these hydrophobic ionic liquids are immiscible with water at room temperature, several of them form a single phase with water at elevated temperatures. Phase separation occurs upon cooling. This thermomorphic behavior has been investigated by (1)H NMR, and it was found that it can be attributed to the temperature-dependent hydration and hydrogen-bond formation of the ionic liquid components. The crystal structures of four ionic liquids and five metal complexes have been determined.


Journal of Chemical Physics | 2008

Temperature dependence of the electrical conductivity of imidazolium ionic liquids

Jan Leys; Michael Wübbenhorst; Chirukandath Preethy Menon; R. Rajesh; Jan Thoen; Christ Glorieux; Peter Nockemann; Ben Thijs; Koen Binnemans; S. Longuemart

The electrical conductivities of 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids and of 1-hexyl-3-methylimidazolium ionic liquids with different anions were determined in the temperature range between 123 and 393 K on the basis of dielectric measurements in the frequency range from 1 to 10(7) Hz. Most of the ionic liquids form a glass and the conductivity values obey the Vogel-Fulcher-Tammann equation. The glass transition temperatures are increasing with increasing length of the alkyl chain. The fragility is weakly dependent on the alkyl chain length but is highly sensitive to the structure of the anion.


Green Chemistry | 2012

An environmentally friendlier approach to hydrometallurgy: highly selective separation of cobalt from nickel by solvent extraction with undiluted phosphonium ionic liquids

Sil Wellens; Ben Thijs; Koen Binnemans

A green solvent extraction process for the separation of cobalt from nickel, magnesium and calcium in chloride medium was developed, using undiluted phosphonium-based ionic liquids as extractants. Cobalt was extracted to the ionic liquid phase as the tetrachlorocobaltate(II) complex, leaving behind nickel, magnesium and calcium in the aqueous phase. Manganese is interfering in the separation process. The main advantage of this ionic liquid extraction process is that no organic diluents have to be added to the organic phase, so that the use of volatile organic compounds can be avoided. Separation factors higher than 50 000 were observed for the cobalt/nickel separation from 8 M HCl solution. After extraction, cobalt can easily be stripped using water and the ionic liquid can be reused as extractant, so that a continuous extraction process is possible. Up to 35 g L−1 of cobalt can be extracted to the ionic liquid phase, while still having a distribution coefficient higher than 100. Instead of hydrochloric acid, sodium chloride can be used as a chloride source. The extraction process has been upscaled to batch processes using 250 mL of ionic liquid. Tri(hexyl)tetradecylphosphonium chloride, tri(butyl)tetradecylphosphonium chloride, tetra(octyl)phosphonium bromide, tri(hexyl)tetradecylphosphonium bromide and Aliquat 336 have been tested for their performance to extract cobalt from an aqueous chloride phase to an ionic liquid phase. Tri(hexyl)tetradecylphosphonium chloride (Cyphos IL 101) turned out to be the best option as the ionic liquid phase, compromising between commercial availability, separation characteristics and easiness to handle the ionic liquid.


Journal of Physical Chemistry B | 2009

Temperature-driven mixing-demixing behavior of binary mixtures of the ionic liquid choline bis(trifluoromethylsulfonyl)imide and water.

Peter Nockemann; Koen Binnemans; Ben Thijs; Tatjana N. Parac-Vogt; Klaus Merz; Anja-Verena Mudring; Preethy Menon; R. Rajesh; George Cordoyiannis; Jan Thoen; Jan Leys; Christ Glorieux

The ionic liquid (2-hydroxyethylammonium)trimethylammonium) bis(trifluoromethylsulfonyl)imide (choline bistriflimide) was obtained as a supercooled liquid at room temperature (melting point=30 degrees C). Crystals of choline bistriflimide suitable for structure determination were grown from the melt in situ on the X-ray diffractometer. The choline cation adopts a folded conformation, whereas the bistriflimide anion exhibits a transoid conformation. The choline cation and the bistriflimide anion are held together by hydrogen bonds between the hydroxyl proton and a sulfonyl oxygen atom. This hydrogen bonding is of importance for the temperature-dependent solubility properties of the ionic liquid. Choline bistriflimide is not miscible with water at room temperature, but forms one phase with water at temperatures above 72 degrees C (equals upper critical solution temperature). 1H NMR studies show that the hydrogen bonds between the choline cation and the bistriflimide anion are substantially weakened above this temperature. The thermophysical properties of water-choline bistriflimide binary mixtures were furthermore studied by a photopyroelectric technique and by adiabatic scanning calorimetry (ASC). By photothermal analysis, besides highly accurate values for the thermal conductivity and effusivity of choline bistriflimide at 30 degrees C, the detailed temperature dependence of both the thermal conductivity and effusivity of the upper and lower part of a critical water-choline bistriflimide mixture in the neighborhood of the mixing-demixing phase transition could be determined with high resolution and accuracy. Together with high resolution ASC data for the heat capacity, experimental values were obtained for the critical exponents alpha and beta, and for the critical amplitude ratio G+/G-. These three values were found to be consistent with theoretical expectations for a three dimensional Ising-type of critical behavior of binary liquid mixtures.


Green Chemistry | 2013

A continuous ionic liquid extraction process for the separation of cobalt from nickel

Sil Wellens; Remi Goovaerts; Claudia Möller; Jan Luyten; Ben Thijs; Koen Binnemans

A continuous ionic liquid extraction process using the ionic liquid trihexyl(tetradecyl)phosphonium chloride (Cyphos® IL 101) has been developed for the selective extraction of cobalt from nickel. The performance of this continuous extraction process is competitive with that of currently applied industrial processes. Moreover, the elimination of volatile odorous compounds from the extraction phase leads to environmentally friendlier and healthier working conditions.


Inorganic Chemistry | 2010

Uranyl Complexes of Carboxyl-Functionalized Ionic Liquids

Peter Nockemann; Rik Van Deun; Ben Thijs; Diederik Huys; Evert Vanecht; Kristof Van Hecke; Luc Van Meervelt; Koen Binnemans

Uranium(VI) oxide has been dissolved in three different ionic liquids functionalized with a carboxyl group: betainium bis[(trifluoromethyl)sulfonyl]imide, 1-(carboxymethyl)-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, and N-(carboxymethyl)-N-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide. The dissolution process results in the formation of uranyl complexes with zwitterionic carboxylate ligands and bis[(trifluoromethyl)sulfonyl]imide (bistriflimide) counterions. An X-ray diffraction study on single crystals of the uranyl complexes revealed that the crystal structure strongly depends on the cationic core appended to the carboxylate groups. The betainium ionic liquid gives a dimeric uranyl complex, the imidazolium ionic liquid a monomeric complex, and the pyrrolidinium ionic liquid a one-dimensional polymeric uranyl complex. Extended X-ray absorption fine structure measurements have been performed on the betainium uranyl complex. The absorption and luminescence spectra of the uranyl betainium complex have been studied in the solid state and dissolved in water, in acetonitrile, and in the ionic liquid betainium bistriflimide. The carboxylate groups remain coordinated to uranyl in acetonitrile and in betainium bistriflimide but not in water.


Chemistry: A European Journal | 2009

Speciation of Rare‐Earth Metal Complexes in Ionic Liquids: A Multiple‐Technique Approach

Peter Nockemann; Ben Thijs; Kyra Lunstroot; Tatjana N. Parac-Vogt; Christiane Görller-Walrand; Koen Binnemans; Kristof Van Hecke; Luc Van Meervelt; Sergey I. Nikitenko; John E. Daniels; Christoph Hennig; Rik Van Deun

The dissolution process of metal complexes in ionic liquids was investigated by a multiple-technique approach to reveal the solvate species of the metal in solution. The task-specific ionic liquid betainium bis(trifluoromethylsulfonyl)imide ([Hbet][Tf(2)N]) is able to dissolve stoichiometric amounts of the oxides of the rare-earth elements. The crystal structures of the compounds [Eu(2)(bet)(8)(H(2)O)(4)][Tf(2)N](6), [Eu(2)(bet)(8)(H(2)O)(2)][Tf(2)N](6) x 2 H(2)O, and [Y(2)(bet)(6)(H(2)O)(4)][Tf(2)N](6) were found to consist of dimers. These rare-earth complexes are well soluble in the ionic liquids [Hbet][Tf(2)N] and [C(4)mim][Tf(2)N] (C(4)mim = 1-butyl-3-methylimidazolium). The speciation of the metal complexes after dissolution in these ionic liquids was investigated by luminescence spectroscopy, (1)H, (13)C, and (89)Y NMR spectroscopy, and by the synchrotron techniques EXAFS (extended X-ray absorption fine structure) and HEXS (high-energy X-ray scattering). The combination of these complementary analytical techniques reveals that the cationic dimers decompose into monomers after dissolution of the complexes in the ionic liquids. Deeper insight into the solution processes of metal compounds is desirable for applications of ionic liquids in the field of electrochemistry, catalysis, and materials chemistry.


Chemistry: A European Journal | 2010

Cobalt(II) complexes of nitrile-functionalized ionic liquids.

Peter Nockemann; Michael Pellens; Kristof Van Hecke; Luc Van Meervelt; Johan Wouters; Ben Thijs; Evert Vanecht; Tatjana N. Parac-Vogt; Hasan Mehdi; Stijn Schaltin; Jan Fransaer; Stefan Zahn; Barbara Kirchner; Koen Binnemans

A series of nitrile-functionalized ionic liquids were found to exhibit temperature-dependent miscibility (thermomorphism) with the lower alcohols. Their coordinating abilities toward cobalt(II) ions were investigated through the dissolution process of cobalt(II) bis(trifluoromethylsulfonyl)imide and were found to depend on the donor abilities of the nitrile group. The crystal structures of the cobalt(II) solvates [Co(C(1)C(1CN)Pyr)(2)(Tf(2)N)(4)] and [Co(C(1)C(2CN)Pyr)(6)][Tf(2)N](8), which were isolated from ionic-liquid solutions, gave an insight into the coordination chemistry of functionalized ionic liquids. Smooth layers of cobalt metal could be obtained by electrodeposition of the cobalt-containing ionic liquids.


Physical Chemistry Chemical Physics | 2013

Separation of cobalt and nickel by solvent extraction with two mutually immiscible ionic liquids

Sil Wellens; Ben Thijs; Claudia Möller; Koen Binnemans

The proof-of-principle for the separation of metals by solvent extraction using two mutually immiscible ionic liquids is given. Cobalt was extracted from the ionic liquid 1-ethyl-3-methylimidazolium chloride to the ionic liquid trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate. A distribution ratio of 44 was obtained. Cobalt could be selectively separated from nickel, with a separation factor of 207. The extraction mechanism was elucidated using UV-VIS absorption measurements. The mutual solubility between the two ionic liquids was determined by (1)H NMR. Processing steps such as washing, stripping and regeneration of the ionic liquid phases are discussed.


Electrochemical and Solid State Letters | 2007

Influence of the Anion on the Electrodeposition of Cobalt from Imidazolium Ionic Liquids

Stijn Schaltin; Peter Nockemann; Ben Thijs; Koen Binnemans; Jan Fransaer

Cyclic voltammetry and absorption spectrophotometry were used to examine the complex formation of cobalt(II) in the ionic liquids 1-butyl-3-methylimidazolium chloride ([C 4 mim]Cl) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C 4 mim][Tf 2 N]). In [C 4 mim]Cl, cobalt(II) is complexed as [CoCl 4 ] 2- at CoCl 2 concentrations less than 33 mol %. Cyclic voltammograms show that cobalt cannot be electrodeposited at these concentrations. However, cobalt metal can be electrodeposited at CoCl 2 concentrations above the threshold concentration of 33 mol %. In the ionic liquid [C 4 mim][Tf 2 N] there is no threshold CoCl 2 concentration for electrodeposition due to the absence of [CoCl 4 ] 2- .

Collaboration


Dive into the Ben Thijs's collaboration.

Top Co-Authors

Avatar

Peter Nockemann

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luc Van Meervelt

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sil Wellens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Michael Pellens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Evert Vanecht

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Tatjana N. Parac-Vogt

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge