Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ben-Yang Liao is active.

Publication


Featured researches published by Ben-Yang Liao.


Molecular Biology and Evolution | 2012

DNA Methylation Rebalances Gene Dosage after Mammalian Gene Duplications

Andrew Ying-Fei Chang; Ben-Yang Liao

Although gene duplication plays a major role in organismal evolution, it may also lead to gene dosage imbalance, thereby having an immediate adverse effect on an organisms fitness. Investigating the evolution of the expression patterns of genes that duplicated after the divergence of rodents and primates, we confirm that adaptive evolution has been involved in dosage rebalance after gene duplication. To understand mechanisms underlying this process, we examined 1) microRNA (miRNA)-mediated gene regulation, 2) cis-regulatory sequence modifications, and 3) DNA methylation. Neither miRNA-mediated regulation nor cis-regulatory changes was found to be associated with expression reduction of duplicate genes. By contrast, duplicate genes, especially lowly expressed copies, were heavily methylated in the upstream region. However, for duplicate genes encoding proteins that are members of macromolecular complexes, heavy methylation in the genic region was not consistently observed. This result held after controlling potential confounding factors, such as enrichment in functional categories. Our results suggest that during mammalian evolution, DNA methylation plays a dominant role in dosage rebalance after gene duplication by inhibiting transcription initiation of duplicate genes.


Genetics | 2008

Adaptive Evolution of the Insulin Two-Gene System in Mouse

Meng-Shin Shiao; Ben-Yang Liao; Manyuan Long; Hon-Tsen Yu

Insulin genes in mouse and rat compose a two-gene system in which Ins1 was retroposed from the partially processed mRNA of Ins2. When Ins1 originated and how it was retained in genomes still remain interesting problems. In this study, we used genomic approaches to detect insulin gene copy number variation in rodent species and investigated evolutionary forces acting on both Ins1 and Ins2. We characterized the phylogenetic distribution of the new insulin gene (Ins1) by Southern analyses and confirmed by sequencing insulin genes in the rodent genomes. The results demonstrate that Ins1 originated right before the mouse–rat split (∼20 MYA), and both Ins1 and Ins2 are under strong functional constraints in these murine species. Interestingly, by examining a range of nucleotide polymorphisms, we detected positive selection acting on both Ins2 and Ins1 gene regions in the Mus musculus domesticus populations. Furthermore, three amino acid sites were also identified as having evolved under positive selection in two insulin peptides: two are in the signal peptide and one is in the C-peptide. Our data suggest an adaptive divergence in the mouse insulin two-gene system, which may result from the response to environmental change caused by the rise of agricultural civilization, as proposed by the thrifty-genotype hypothesis.


Genome Biology and Evolution | 2012

Transcriptomes of Mouse Olfactory Epithelium Reveal Sexual Differences in Odorant Detection

Meng-Shin Shiao; Andrew Ying-Fei Chang; Ben-Yang Liao; Yung-Hao Ching; Mei-Yeh Jade Lu; Stella Maris Chen; Wen-Hsiung Li

To sense numerous odorants and chemicals, animals have evolved a large number of olfactory receptor genes (Olfrs) in their genome. In particular, the house mouse has ∼1,100 genes in the Olfr gene family. This makes the mouse a good model organism to study Olfr genes and olfaction-related genes. To date, whether male and female mice possess the same ability in detecting environmental odorants is still unknown. Using the next generation sequencing technology (paired-end mRNA-seq), we detected 1,088 expressed Olfr genes in both male and female olfactory epithelium. We found that not only Olfr genes but also odorant-binding protein (Obp) genes have evolved rapidly in the mouse lineage. Interestingly, Olfr genes tend to express at a higher level in males than in females, whereas the Obp genes clustered on the X chromosome show the opposite trend. These observations may imply a more efficient odorant-transporting system in females, whereas a more active Olfr gene expressing system in males. In addition, we detected the expression of two genes encoding major urinary proteins, which have been proposed to bind and transport pheromones or act as pheromones in mouse urine. This observation suggests a role of main olfactory system (MOS) in pheromone detection, contrary to the view that only accessory olfactory system (AOS) is involved in pheromone detection. This study suggests the sexual differences in detecting environmental odorants in MOS and demonstrates that mRNA-seq provides a powerful tool for detecting genes with low expression levels and with high sequence similarities.


Genome Biology and Evolution | 2009

Scanning for the Signatures of Positive Selection for Human-Specific Insertions and Deletions

Chun-Hsi Chen; Trees-Juen Chuang; Ben-Yang Liao; Feng-Chi Chen

Human-specific small insertions and deletions (HS indels, with lengths <100 bp) are reported to be ubiquitous in the human genome. However, whether these indels contribute to human-specific traits remains unclear. Here we employ a modified McDonald–Kreitman (MK) test and a combinatorial population genetics approach to infer, respectively, the occurrence of positive selection and recent selective sweep events associated with HS indels. We first extract 625,890 HS indels from the human–chimpanzee–macaque–mouse multiple alignments and classify them into nonpolymorphic (41%) and polymorphic (59%) indels with reference to the human indel polymorphism data. The modified MK test is then applied to 100-kb partially overlapped sliding windows across the human genome to scan for the signs of positive selection. After excluding the possibility of biased gene conversion and controlling for false discovery rate, we show that HS indels are potentially positively selected in about 10 Mb of the human genome. Furthermore, the indel-associated positively selected regions overlap with genes more often than expected. However, our result suggests that the potential targets of positive selection are located in noncoding regions. Meanwhile, we also demonstrate that the genomic regions surrounding HS indels are more frequently involved in recent selective sweep than the other regions. In addition, HS indels are associated with distinct recent selective sweep events in different human subpopulations. Our results suggest that HS indels may have been associated with human adaptive changes at both the species level and the subpopulation level.


Genome Biology and Evolution | 2013

Flagellated Algae Protein Evolution Suggests the Prevalence of Lineage-Specific Rules Governing Evolutionary Rates of Eukaryotic Proteins

Ting-Yan Chang; Ben-Yang Liao

Understanding the general rules governing the rate of protein evolution is fundamental to evolutionary biology. However, attempts to address this issue in yeasts and mammals have revealed considerable differences in the relative importance of determinants for protein evolutionary rates. This phenomenon was previously explained by the fact that yeasts and mammals are different in many cellular and genomic properties. Flagellated algae species have several cellular and genomic characteristics that are intermediate between yeasts and mammals. Using partial correlation analyses on the evolution of 6,921 orthologous proteins from Chlamydomonas reinhardtii and Volvox carteri, we examined factors influencing evolutionary rates of proteins in flagellated algae. Previous studies have shown that mRNA abundance and gene compactness are strong determinants for protein evolutionary rates in yeasts and mammals, respectively. We show that both factors also influence algae protein evolution with mRNA abundance having a larger impact than gene compactness on the rates of algae protein evolution. More importantly, among all the factors examined, coding sequence (CDS) length has the strongest (positive) correlation with protein evolutionary rates. This correlation between CDS length and the rates of protein evolution is not due to alignment-related issues or domain density. These results suggest no simple and universal rules governing protein evolutionary rates across different eukaryotic lineages. Instead, gene properties influence the rate of protein evolution in a lineage-specific manner.


BMC Genomics | 2014

Accumulation of CTCF-binding sites drives expression divergence between tandemly duplicated genes in humans

Ben-Yang Liao; Andrew Ying-Fei Chang

BackgroundDuring eukaryotic genome evolution, tandem gene duplication is the most frequent event giving rise to clustered gene families. However, how expression divergence between tandemly duplicated genes has emerged and maintained remain unclear. In particular, it is unknown if epigenetic regulators have been involved in the process.ResultsWe demonstrate that CCCTC-binding factor (CTCF), the master epigenetic regulator and the only known insulator protein in humans, has played a predominant role in generating divergence in both expression profiles and expression levels between adjacent paralogs in the human genome. This phenomenon was not observed for non-paralogous adjacent genes. After tandem duplication events, CTCF-binding sites gradually accumulate between paralogs. This trend was more prominent for genes involved in particular functions.ConclusionsThe accumulation of CTCF-binding sites drives expression divergence of tandemly duplicated genes. This process is likely targeted by natural selection. Our study reveals the importance of CTCF to the evolution of animal diversity and complexity.


Molecular Biology and Evolution | 2016

Proteins with Highly Evolvable Domain Architectures Are Nonessential but Highly Retained

Chia-Hsin Hsu; Austin W. T. Chiang; Ming-Jing Hwang; Ben-Yang Liao

The functions of proteins are usually determined by domains, and the sequential order in which domains are connected to make up a protein chain is known as the domain architecture. Here, we constructed evolutionary networks of protein domain architectures in species from three major life lineages (bacteria, fungi, and metazoans) by connecting any two architectures between which an evolutionary event could be inferred by a model that assumes maximum parsimony. We found that proteins with domain architectures with a higher level of evolvability, indicated by a greater number of connections in the evolutionary network, are present in a wider range of species. However, these proteins tend to be less essential to the organism, are duplicated more often during evolution, have more isoforms, and, intriguingly, tend to be associated with functional categories important for organismal adaptation. These results reveal the presence, in many genomes, of genes coding for a core set of nonessential proteins that have a highly evolvable domain architecture and thus a repertoire of genetic materials accessible for organismal adaptation.


Nucleic Acids Research | 2013

Functional characterization of motif sequences under purifying selection

De-Hua Chen; Andrew Ying-Fei Chang; Ben-Yang Liao; Chen-Hsiang Yeang

Diverse life forms are driven by the evolution of gene regulatory programs including changes in regulator proteins and cis-regulatory elements. Alterations of cis-regulatory elements are likely to dominate the evolution of the gene regulatory networks, as they are subjected to smaller selective constraints compared with proteins and hence may evolve quickly to adapt the environment. Prior studies on cis-regulatory element evolution focus primarily on sequence substitutions of known transcription factor-binding motifs. However, evolutionary models for the dynamics of motif occurrence are relatively rare, and comprehensive characterization of the evolution of all possible motif sequences has not been pursued. In the present study, we propose an algorithm to estimate the strength of purifying selection of a motif sequence based on an evolutionary model capturing the birth and death of motif occurrences on promoters. We term this measure as the ‘evolutionary retention coefficient’, as it is related yet distinct from the canonical definition of selection coefficient in population genetics. Using this algorithm, we estimate and report the evolutionary retention coefficients of all possible 10-nucleotide sequences from the aligned promoter sequences of 27 748. orthologous gene families in 34 mammalian species. Intriguingly, the evolutionary retention coefficients of motifs are intimately associated with their functional relevance. Top-ranking motifs (sorted by evolutionary retention coefficients) are significantly enriched with transcription factor-binding sequences according to the curated knowledge from the TRANSFAC database and the ChIP-seq data generated from the ENCODE Consortium. Moreover, genes harbouring high-scoring motifs on their promoters retain significantly coherent expression profiles, and those genes are over-represented in the functional classes involved in gene regulation. The validation results reveal the dependencies between natural selection and functions of cis-regulatory elements and shed light on the evolution of gene regulatory networks.


PLOS ONE | 2012

Mammalian Genes Preferentially Co-Retained in Radiation Hybrid Panels Tend to Avoid Coexpression

Ben-Yang Liao; Andy Chang

Coexpression has been frequently used to explore modules of functionally related genes in eukaryotic genomes. However, we found that genetically interacting mammalian genes identified through radiation hybrid (RH) genotypes tend not to be coexpressed across tissues. This pattern remained unchanged after controlling for potential confounding factors, including chromosomal linkage, chromosomal distance, and gene duplication. Because >99.9% of the genetically interacting genes were identified according to the higher co-retention frequencies, our observation implies that coexpression is not necessarily an indication of the need for the co-presence of two genes in the genome, which is a prerequisite for cofunctionality of their coding proteins in the cell. Therefore, coexpression information must be applied cautiously to the exploration of the functional relatedness of genes in a genome.


Molecular Biology and Evolution | 2012

Assessing determinants of exonic evolutionary rates in mammals

Feng-Chi Chen; Ben-Yang Liao; Chia-Lin Pan; Hsuan-Yu Lin; Andrew Ying-Fei Chang

Collaboration


Dive into the Ben-Yang Liao's collaboration.

Top Co-Authors

Avatar

Andrew Ying-Fei Chang

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Feng-Chi Chen

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Chun-Hsi Chen

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chia-Lin Pan

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

De-Hua Chen

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Hon-Tsen Yu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Hsuan-Yu Lin

National Health Research Institutes

View shared research outputs
Researchain Logo
Decentralizing Knowledge