Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hon-Tsen Yu is active.

Publication


Featured researches published by Hon-Tsen Yu.


Molecular Ecology | 2008

Inferring the history of speciation in house mice from autosomal, X-linked, Y-linked and mitochondrial genes

Armando Geraldes; Patrick Basset; Barbara Gibson; Kimberley L. Smith; Bettina Harr; Hon-Tsen Yu; Nina Sh. Bulatova; Yaron Ziv; Michael W. Nachman

Patterns of genetic differentiation among taxa at early stages of divergence provide an opportunity to make inferences about the history of speciation. Here, we conduct a survey of DNA‐sequence polymorphism and divergence at loci on the autosomes, X chromosome, Y chromosome and mitochondrial DNA in samples of Mus domesticus, M. musculus and M. castaneus. We analyzed our data under a divergence with gene flow model and estimate that the effective population size of M. castaneus is 200 000–400 000, of M. domesticus is 100 000–200 000 and of M. musculus is 60 000–120 000. These data also suggest that these species started to diverge approximately 500 000 years ago. Consistent with this recent divergence, we observed considerable variation in the genealogical patterns among loci. For some loci, all alleles within each species formed a monophyletic group, while at other loci, species were intermingled on the phylogeny of alleles. This intermingling probably reflects both incomplete lineage sorting and gene flow after divergence. Likelihood ratio tests rejected a strict allopatric model with no gene flow in comparisons between each pair of species. Gene flow was asymmetric: no gene flow was detected into M. domesticus, while significant gene flow was detected into both M. castaneus and M. musculus. Finally, most of the gene flow occurred at autosomal loci, resulting in a significantly higher ratio of fixed differences to polymorphisms at the X and Y chromosomes relative to autosomes in some comparisons, or just the X chromosome in others, emphasizing the important role of the sex chromosomes in general and the X chromosome in particular in speciation.


Gastroenterology | 2012

Dysregulation of CD1d-Restricted Type II Natural Killer T Cells Leads to Spontaneous Development of Colitis in Mice

Chia Min Liao; Michael Zimmer; Sharmila Shanmuganad; Hon-Tsen Yu; Susanna Cardell; Chyung Ru Wang

BACKGROUND & AIMS CD1d-restricted natural killer (NK) T cells are a subset of immunoregulatory T cells that comprise type I (express the semi-invariant T-cell receptor [TCR] and can be detected using the α-galactosylceramide/CD1d tetramer) and type II (express diverse TCRs and cannot be directly identified). Studies in mouse models of inflammatory bowel disease revealed a complex role for type I NKT cells in the development of colitis. Type II NKT cells have been associated with intestinal inflammation in patients with ulcerative colitis. METHODS To investigate whether dysregulation of type II NKT cells, caused by increased expression of CD1d, can contribute to colitis, we generated transgenic mice that express high levels of CD1d and a TCR from an autoreactive, type II NKT cell (CD1dTg/24αβTg mice). RESULTS CD1dTg/24αβTg mice had reduced numbers of 24αβ T cells compared with 24αβTg mice, indicating that negative selection increases among type II NKT cells engaged by abundant self-antigen. The residual 24αβ T cells in CD1dTg/24αβTg mice had an altered surface phenotype and acquired a cytokine profile distinct from that of equivalent cells in 24αβTg mice. Interestingly, CD1dTg/24αβTg mice spontaneously developed colitis; adoptive transfer experiments confirmed that type II NKT cells that develop in the context of increased CD1d expression are pathogenic. CONCLUSIONS Aberrant type II NKT cell responses directly contribute to intestinal inflammation in mice, indicating the importance of CD1d expression levels in the development and regulation of type II NKT cells.


PLOS Pathogens | 2014

An Invertebrate Warburg Effect: A Shrimp Virus Achieves Successful Replication by Altering the Host Metabolome via the PI3K-Akt-mTOR Pathway

Mei-An Su; Yun-Tzu Huang; I-Tung Chen; Der-Yen Lee; Yun-Chieh Hsieh; Chun-Yuan Li; Tze Hann Ng; Suh-Yuen Liang; Shu-Yu Lin; Shiao-Wei Huang; Yi-An Chiang; Hon-Tsen Yu; Kay-Hooi Khoo; Geen-Dong Chang; Chu Fang Lo; Han Ching Wang

In this study, we used a systems biology approach to investigate changes in the proteome and metabolome of shrimp hemocytes infected by the invertebrate virus WSSV (white spot syndrome virus) at the viral genome replication stage (12 hpi) and the late stage (24 hpi). At 12 hpi, but not at 24 hpi, there was significant up-regulation of the markers of several metabolic pathways associated with the vertebrate Warburg effect (or aerobic glycolysis), including glycolysis, the pentose phosphate pathway, nucleotide biosynthesis, glutaminolysis and amino acid biosynthesis. We show that the PI3K-Akt-mTOR pathway was of central importance in triggering this WSSV-induced Warburg effect. Although dsRNA silencing of the mTORC1 activator Rheb had only a relatively minor impact on WSSV replication, in vivo chemical inhibition of Akt, mTORC1 and mTORC2 suppressed the WSSV-induced Warburg effect and reduced both WSSV gene expression and viral genome replication. When the Warburg effect was suppressed by pretreatment with the mTOR inhibitor Torin 1, even the subsequent up-regulation of the TCA cycle was insufficient to satisfy the viruss requirements for energy and macromolecular precursors. The WSSV-induced Warburg effect therefore appears to be essential for successful viral replication.


Marine Biotechnology | 2002

Genetic analysis of the populations of Japanese anchovy (Engraulidae: Engraulis japonicus) using microsatellite DNA.

Hon-Tsen Yu; Yann-Jium Lee; Shiao-Wei Huang; Tai-Sheng Chiu

We analyzed the population structure of the Japanese anchovy (Engraulis japonicus), a small pelagic fish, using 6 microsatellite DNA loci. The anchovy is known to have 2 separate spawning populations, one near northeastern Taiwan in the Pacific Ocean and the other near southwestern Taiwan in the Taiwan Strait. The planktonic larvae then drifted north to the feeding grounds in the East China Sea to advance in their life history. Three populations of the anchovy were analyzed, including 2 temporal population from the northeastern spawning ground (I-Lan 1999 and I-Lan 2000) and one population from the southwestern spawning ground (Peng-Hu 2000). The genetic variability of the 6 loci was high for all the populations. The average numbers of alleles per population ranged from 25.5 to 32.3, and the average observed heterozygosity ranged from 0.559 to 0.650. A significant population differentiation was found between geographic populations but not between the temporal populations. However, the level of geographic differentiation was weak, average FST 0.0088. The significant geographic population structure indicated that the populations of 2 spawning grounds belonged to separate stocks. Moreover, 16 of the 18 population-locus cases showed significant departure from Hardy-Weinberg equilibrium, implying that each spawning population in turn consisted of mixed native stocks. Finally, we posed 3 population models to be evaluated against the genetic data disclosed with the microsatellite markers.


Nature Genetics | 2003

A natural allele of Nxf1 suppresses retrovirus insertional mutations

Jennifer A. Floyd; David A. Gold; Dorothy Concepcion; Tiffany Poon; Xiaobo Wang; Elizabeth M. Keithley; Dan Chen; Erica J. Ward; Steven B. Chinn; Rick A. Friedman; Hon-Tsen Yu; Kazuo Moriwaki; Toshihiko Shiroishi; Bruce A. Hamilton

Endogenous retroviruses have shaped the evolution of mammalian genomes. Host genes that control the effects of retrovirus insertions are therefore of great interest. The modifier-of-vibrator-1 locus (Mvb1) controls levels of correctly processed mRNA from genes mutated by endogenous retrovirus insertions into introns, including the Pitpnvb tremor mutation and the Eya1BOR model of human branchiootorenal syndrome. Positional complementation cloning identifies Mvb1 as the nuclear export factor Nxf1, providing an unexpected link between the mRNA export receptor and pre-mRNA processing. Population structure of the suppressive allele in wild Mus musculus castaneus suggests selective advantage. A congenic Mvb1CAST allele is a useful tool for modifying gene expression from existing mutations and could be used to manipulate engineered mutations containing retroviral elements.


Genetics | 2008

Adaptive Evolution of the Insulin Two-Gene System in Mouse

Meng-Shin Shiao; Ben-Yang Liao; Manyuan Long; Hon-Tsen Yu

Insulin genes in mouse and rat compose a two-gene system in which Ins1 was retroposed from the partially processed mRNA of Ins2. When Ins1 originated and how it was retained in genomes still remain interesting problems. In this study, we used genomic approaches to detect insulin gene copy number variation in rodent species and investigated evolutionary forces acting on both Ins1 and Ins2. We characterized the phylogenetic distribution of the new insulin gene (Ins1) by Southern analyses and confirmed by sequencing insulin genes in the rodent genomes. The results demonstrate that Ins1 originated right before the mouse–rat split (∼20 MYA), and both Ins1 and Ins2 are under strong functional constraints in these murine species. Interestingly, by examining a range of nucleotide polymorphisms, we detected positive selection acting on both Ins2 and Ins1 gene regions in the Mus musculus domesticus populations. Furthermore, three amino acid sites were also identified as having evolved under positive selection in two insulin peptides: two are in the signal peptide and one is in the C-peptide. Our data suggest an adaptive divergence in the mouse insulin two-gene system, which may result from the response to environmental change caused by the rise of agricultural civilization, as proposed by the thrifty-genotype hypothesis.


BMC Genomics | 2011

Fosmid library end sequencing reveals a rarely known genome structure of marine shrimp Penaeus monodon.

Shiao Wei Huang; You Yu Lin; En Min You; Tze Tze Liu; Hung Yu Shu; Keh Ming Wu; Shih-Feng Tsai; Chu Fang Lo; Guang Hsiung Kou; Gwo Chin Ma; Ming Chen; Dongying Wu; Takashi Aoki; Ikuo Hirono; Hon-Tsen Yu

BackgroundThe black tiger shrimp (Penaeus monodon) is one of the most important aquaculture species in the world, representing the crustacean lineage which possesses the greatest species diversity among marine invertebrates. Yet, we barely know anything about their genomic structure. To understand the organization and evolution of the P. monodon genome, a fosmid library consisting of 288,000 colonies and was constructed, equivalent to 5.3-fold coverage of the 2.17 Gb genome. Approximately 11.1 Mb of fosmid end sequences (FESs) from 20,926 non-redundant reads representing 0.45% of the P. monodon genome were obtained for repetitive and protein-coding sequence analyses.ResultsWe found that microsatellite sequences were highly abundant in the P. monodon genome, comprising 8.3% of the total length. The density and the average length of microsatellites were evidently higher in comparison to those of other taxa. AT-rich microsatellite motifs, especially poly (AT) and poly (AAT), were the most abundant. High abundance of microsatellite sequences were also found in the transcribed regions. Furthermore, via self-BlastN analysis we identified 103 novel repetitive element families which were categorized into four groups, i.e., 33 WSSV-like repeats, 14 retrotransposons, 5 gene-like repeats, and 51 unannotated repeats. Overall, various types of repeats comprise 51.18% of the P. monodon genome in length. Approximately 7.4% of the FESs contained protein-coding sequences, and the Inhibitor of Apoptosis Protein (IAP) gene and the Innexin 3 gene homologues appear to be present in high abundance in the P. monodon genome.ConclusionsThe redundancy of various repeat types in the P. monodon genome illustrates its highly repetitive nature. In particular, long and dense microsatellite sequences as well as abundant WSSV-like sequences highlight the uniqueness of genome organization of penaeid shrimp from those of other taxa. These results provide substantial improvement to our current knowledge not only for shrimp but also for marine crustaceans of large genome size.


Molecular Ecology | 2014

Phylogeography of Chinese house mice (Mus musculus musculus/castaneus): distribution, routes of colonization and geographic regions of hybridization

Meidong Jing; Hon-Tsen Yu; Xiao-xin Bi; Yung-Chih Lai; Wei Jiang; Ling Huang

House mice (Mus musculus) are human commensals and have served as a primary model in biomedical, ecological and evolutionary research. Although there is detailed knowledge of the biogeography of house mice in Europe, little is known of the history of house mice in China, despite the fact that China encompasses an enormous portion of their range. In the present study, 535 house mice caught from 29 localities in China were studied by sequencing the mitochondrial D‐loop and genotyping 10 nuclear microsatellite markers distributed on 10 chromosomes. Phylogenetic analyses revealed two evolutionary lineages corresponding to Mus musculus castaneus and Mus musculus musculus in the south and north, respectively, with the Yangtze River approximately representing the boundary. More detailed analyses combining published sequence data from mice sampled in neighbouring countries revealed the migration routes of the two subspecies into China: M. m. castaneus appeared to have migrated through a southern route (Yunnan and Guangxi), whereas M. m. musculus entered China from Kazakhstan through the north‐west border (Xinjiang). Bayesian analysis of mitochondrial sequences indicated rapid population expansions in both subspecies, approximately 4650–9300 and 7150–14 300 years ago for M. m. castaneus and M. m. musculus, respectively. Interestingly, the migration routes of Chinese house mice coincide with the colonization routes of modern humans into China, and the expansion times of house mice are consistent with the development of agriculture in southern and northern China, respectively. Finally, our study confirmed the existence of a hybrid zone between M. m. castaneus and M. m. musculus in China. Further study of this hybrid zone will provide a useful counterpart to the well‐studied hybrid zone between M. m. musculus and Mus musculus domesticus in central Europe.


Genetica | 2003

Genetic variation of microsatellite loci in the major histocompatibility complex (MHC) region in the southeast Asian house mouse (Mus musculus castaneus).

Shiao-Wei Huang; Hon-Tsen Yu

Major histocompatibility complex (MHC) genes are the most polymorphic loci known for vertebrates. Here we employed five microsatellite loci closely linked to the MHC region in an attempt to study the amount of genetic variation in 19 populations of the southeast Asian house mouse (Mus musculus castaneus) in Taiwan. The overall polymorphism at the five loci was high (He = 0.713), and the level of polymorphism varied from locus to locus. Furthermore, in order to investigate if selection is operating on MHC genes in natural mouse populations, we compared the extent and pattern of genetic variation for the MHC-linked microsatellite loci (the MHC loci) with those for the microsatellite loci located outside the MHC region (the non-MHC loci). The number of alleles and the logarithm of variance in repeat number were significantly higher for the MHC loci than for the non-MHC loci, presumably reflecting linkage to a locus under balancing selection. Although three statistical tests used do not provide support for selection, their lack of support may be due to low statistical power of the tests, to weakness of selection, or to a profound effect of genetic drift reducing the signature of balancing selection. Our results also suggested that the populations in the central and the southwestern regions of Taiwan might be one part of a metapopulation structure.


Zoological Science | 2002

Population differentiation and gene flow revealed by microsatellite DNA markers in the house mouse (Mus musculus castaneus) in Taiwan

Hon-Tsen Yu; Yu-Huei Peng

Abstract We analyzed population subdivision and gene flow of the Southeast Asian house mouse (Mus musculus castaneus) in Taiwan by using six microsatellite DNA markers. Seven populations of the house mouse (187 individuals), including one from Fukien Province in southeastern China, which is separated from Taiwan by the Taiwan Strait, were analyzed in this study. The overall polymorphic level at the six loci was high (He=0.76) although individual populations varied in their levels of heterozygosity (He=0.35–0.83). For the populations within Taiwan, there was no evidence of isolation by distance and the level of gene flow was not (inversely) correlated to geographic distances. Gene flow was estimated to be higher across the Taiwan Strait than within the island of Taiwan. These observations of gene flow cannot be understood unless in the context of the historical human settlements and agricultural expansion, and the commensal habits of the species. We also discussed the causes of population subdivision and genetic variation among populations in terms of ecological characteristics of the house mouse in Taiwan.

Collaboration


Dive into the Hon-Tsen Yu's collaboration.

Top Co-Authors

Avatar

Chu Fang Lo

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Shiao-Wei Huang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Chung-Hsiung Wang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Guang-Hsiung Kou

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Shao-En Peng

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Chang-Feng Dai

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Gwo-Chin Ma

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Hsiao-Pei Lu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Ming Chen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge