Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benedetta Izzi is active.

Publication


Featured researches published by Benedetta Izzi.


Nature Methods | 2013

Recommendations for the design and analysis of epigenome-wide association studies

Karin B. Michels; Alexandra M. Binder; Sarah Dedeurwaerder; Charles B. Epstein; John M. Greally; Ivo Gut; E. Andres Houseman; Benedetta Izzi; Karl T. Kelsey; Alexander Meissner; Aleksandar Milosavljevic; Kimberly D. Siegmund; Christoph Bock; Rafael A. Irizarry

Epigenome-wide association studies (EWAS) hold promise for the detection of new regulatory mechanisms that may be susceptible to modification by environmental and lifestyle factors affecting susceptibility to disease. Epigenome-wide screening methods cover an increasing number of CpG sites, but the complexity of the data poses a challenge to separating robust signals from noise. Appropriate study design, a detailed a priori analysis plan and validation of results are essential to minimize the danger of false positive results and contribute to a unified approach. Epigenome-wide mapping studies in homogenous cell populations will inform our understanding of normal variation in the methylome that is not associated with disease or aging. Here we review concepts for conducting a stringent and powerful EWAS, including the choice of analyzed tissue, sources of variability and systematic biases, outline analytical solutions to EWAS-specific problems and highlight caveats in interpretation of data generated from samples with cellular heterogeneity.


The Journal of Clinical Endocrinology and Metabolism | 2008

GNAS defects identified by stimulatory G protein alpha-subunit signalling studies in platelets.

Kathleen Freson; Benedetta Izzi; Veerle Labarque; Monique Van Helvoirt; Chantal Thys; Christine Wittevrongel; Marie Bex; Roger Bouillon; Nathalie Godefroid; Willem Proesmans; Francis de Zegher; Jaak Jaeken; Chris Van Geet

CONTEXT GNAS is an imprinted region that gives rise to several transcripts, antisense transcripts, and noncoding RNAs, including transcription of RNA encoding the alpha-subunit of the stimulatory G protein (Gsalpha). The complexity of the GNAS cluster results in ubiquitous genomic imprints, tissue-specific Gsalpha expression, and multiple genotype-phenotype relationships. Phenotypes resulting from genetic and epigenetic abnormalities of the GNAS region include Albrights hereditary osteodystrophy, pseudohypoparathyroidism types Ia (PHPIa) and Ib (PHPIb), and pseudopseudohypoparathyroidism (PPHP). OBJECTIVE The aim was to study the complex GNAS pathology by a functional test as an alternative to the generally used but labor-intensive erythrocyte complementation assay. DESIGN AND PATIENTS We report the first platelet-based diagnostic test for Gsalpha hypofunction, supported by clinical, biochemical, and molecular data for six patients with PHPIa or PPHP and nine patients with PHPIb. The platelet test is based on the inhibition of platelet aggregation by cAMP, produced after Gsalpha stimulation. RESULTS Platelets are easily accessible, and platelet aggregation responses were found to reflect Gsalpha signaling defects in patients, in concordance with the patients phenotype and genotype. Gsalpha hypofunction in PHPIa and PPHP patients with GNAS mutations was clearly detected by this method. Mildly decreased or normal Gsalpha function was detected in patients with PHPIb with either an overall or exon 1A-only epigenetic defect, respectively. Platelet Gsalpha expression was reduced in both PHPIb patient groups, whereas XLalphas was up-regulated only in PHPIb patients with the broad epigenetic defect. CONCLUSION The platelet-based test is a novel tool for establishing the diagnosis of Gsalpha defects, which may otherwise be quite challenging.


Current Medicinal Chemistry | 2010

Regulators of platelet cAMP levels: clinical and therapeutic implications.

Laura Noé; Karen Peeters; Benedetta Izzi; C. Van Geet; Kathleen Freson

Platelets are indispensable for primary haemostasis, but their function needs to be tightly regulated to prevent excessive platelet activity, possibly leading to atherothrombotic events. An important mediator of the platelet activity is cyclic AMP (cAMP), which inhibits platelet aggregation. Intracellular cAMP levels are regulated via the Gs and Gi alpha subunits of heterotrimeric G proteins, which couple to adenylyl cyclase to respectively stimulate or inhibit cAMP production. Binding of a ligand to its G protein-coupled seven-transmembrane receptor activates these G proteins. In this review, we discuss a Gs-coupled receptor on platelets, VPAC1, and 2 important Gi-coupled receptors, the ADP receptor P2Y(12) and the prostaglandin E(2) receptor EP3. The regulation of platelet cAMP levels at the level of the receptors themselves or the G proteins coupled to them is analyzed. Alterations in Gsα and Giα function are associated with altered platelet reactivity. An increase in Gs function, or alternatively a defective Gi signaling, can be a risk factor for bleeding, while a loss of Gs function can result in a prothrombotic state. Regulator of G protein signaling (RGS) proteins accelerate the rate of inactivation of G protein-mediated signaling. One of the RGS proteins, RGS2, inhibits Gs signaling by interacting directly with adenylyl cyclase. The thienopyridine class of antiplatelet agents is based on cAMP-mediated regulation of platelet function through modification of the P2Y(12) receptor. Clopidogrel and some other novel cAMP regulators are discussed. Secondly, we review the use of prostacyclin derivatives to treat pulmonary arterial hypertension.


Genes, Brain and Behavior | 2015

DNA methylation in imprinted genes IGF2 and GNASXL is associated with prenatal maternal stress

Elise Vangeel; Benedetta Izzi; Titia Hompes; Kristof Vansteelandt; Diether Lambrechts; Kathleen Freson; Stephan Claes

Epigenetic regulation of imprinted genes during embryonic development is influenced by the prenatal environment. Our aim was to examine the effect of maternal emotional stress and cortisol levels during pregnancy on methylation of imprinted genes, insulin‐like growth factor 2 (IGF2) and guanine nucleotide‐binding protein, alpha stimulating extra‐large (GNASXL), using umbilical cord blood DNA. Maternal depressed mood (Edinburgh Depression Scale; EDS), pregnancy‐related anxiety questionnaire (PRAQ) and cortisol day profiles were assessed throughout pregnancy. At birth, a cord blood sample (n = 80) was taken to study DNA methylation of IGF2 DMR0 (differentially methylated region), IGF2 anti‐sense (IGF2AS) and GNASXL using Sequenom EpiTYPER. Linear mixed models were used to examine the relationship between DNA methylation and maternal stress, while correcting for confounders. We also studied the association of DNA methylation with the child ponderal index at birth. We found a cytosine–guanine dinucleotide (CpG)‐specific association of PRAQ subscales with IGF2 DMR0 (CpG5, P < 0.0001) and GNASXL (CpG11, P = 0.0003), while IGF2AS was associated with maternal EDS scores (CpG33, P = 0.0003) and cortisol levels (CpG33, P = 0.0006; CpG37‐38, P = 0.0005). However, there was no association of methylation with ponderal index at birth. In conclusion, maternal stress during pregnancy, as defined by cortisol measurements, EDS and PRAQ scores, is associated with DNA methylation of imprinted genes IGF2 and GNASXL. Our results provide further evidence that prenatal adversity can influence imprinted gene methylation, although future studies are needed to unravel the exact mechanisms.


European Journal of Human Genetics | 2015

European guidance for the molecular diagnosis of pseudohypoparathyroidism not caused by point genetic variants at GNAS: an EQA study.

Intza Garin; Giovanna Mantovani; Urko Aguirre; Anne Barlier; Bettina Brix; Francesca Elli; Kathleen Freson; Virginie Grybek; Benedetta Izzi; Agnès Linglart; Guiomar Perez de Nanclares; Caroline Silve; Susanne Thiele; Ralf Werner

Pseudohypoparathyroidism is a rare endocrine disorder that can be caused by genetic (mainly maternally inherited inactivating point mutations, although intragenic and gross deletions have rarely been reported) or epigenetic alterations at GNAS locus. Clinical and molecular characterization of this disease is not that easy because of phenotypic, biochemical and molecular overlapping features between both subtypes of the disease. The European Consortium for the study of PHP (EuroPHP) designed the present work with the intention of generating the standards of diagnostic clinical molecular (epi)genetic testing in PHP patients. With this aim, DNA samples of eight independent PHP patients carrying GNAS genetic and/or epigenetic defects (three patients with GNAS deletions, two with 20q uniparental disomy and three with a methylation defect of unknown origin) without GNAS point mutations were anonymized and sent to the five participant laboratories for their routine genetic analysis (methylation-specific (MS)-MLPA, pyrosequencing and EpiTYPER) and interpretations. All laboratories were able to detect methylation defects and, after the data analysis, the Consortium compared the results to define technical advantages and disadvantages of different techniques. To conclude, we propose as first-level investigation in PHP patients copy number and methylation analysis by MS-MLPA. Then, in patients with partial methylation defect, the result should be confirmed by single CpG bisulphite-based methods (ie pyrosequencing), whereas in case of a complete methylation defect without detectable deletion, microsatellites or SNP genotyping should be performed to exclude uniparental disomy 20.


The Journal of Clinical Endocrinology and Metabolism | 2008

Compound Heterozygous Mutations in the GNAS Gene of a Boy with Morbid Obesity, Thyroid-Stimulating Hormone Resistance, Pseudohypoparathyroidism, and a Prothrombotic State

Kathleen Freson; Benedetta Izzi; Jaak Jaeken; Monique Van Helvoirt; Chantal Thys; Christine Wittevrongel; Francis de Zegher; Chris Van Geet

CONTEXT Pseudohypoparathyroidism type Ia and pseudopseudohypoparathyroidism are characterized by Albrights hereditary osteodystrophy (AHO), respectively, with and without hormone resistance. Both clinical conditions result from decreased expression or function of the alpha-subunit of the stimulatory G protein (Gsalpha) of adenylyl cyclase due to heterozygous inactivating mutations in GNAS. Homozygous GNAS defects have not been described. OBJECTIVE A genetic and functional GNAS study was undertaken in a boy with morbid obesity (body mass index Z-score of 5 at the age of 3 yr, with a body fat fraction of 40%, which is more than twice normal), TSH resistance, pseudohypoparathyroidism, and a prothrombotic state. RESULTS The boy was found to be a first case with a compound heterozygous GNAS defect: a de novo R231C mutation on the paternal allele and on the other allele a maternally inherited unique combination of three C to T nucleotide substitutions in exon 7 (I185I), intron 7 (IVS7 + 31), and exon 13 (N371N) leading to aberrant splicing of GNAS. Platelets of this boy displayed a pronounced Gsalpha hypofunction and were spontaneously hyperreactive resulting in a prothrombotic state due to extremely low cAMP levels. CONCLUSION This report expands the human GNAS genotype-phenotype spectrum to include compound heterozygosity and a prothrombotic state.


Journal of Thrombosis and Haemostasis | 2009

Human platelet pathology related to defects in the G-protein signaling cascade

C. Van Geet; Benedetta Izzi; Veerle Labarque; Kathleen Freson

Summary.  Platelets are highly responsive to signals from their environment. The sensing and processing of some of these stimuli are mediated by G‐protein signal transduction cascades. It is well established that proteins involved in signal transduction may be targets for naturally occurring mutations resulting in human diseases. The best‐studied molecules in platelets in relation to disease are the G‐protein coupled receptors being the most platelet‐specific. Many of the other signal transduction genes are often not only present in platelets but also in other tissues. Therefore, the clinical phenotype of signaling defects in platelets, apart from the membrane receptor defects, is seldom isolated to a hemostatic phenotype. Moreover, as platelets are easily accessible cells, and one of the best‐studied models regarding signaling, platelets are easily applicable to investigate defects in ubiquitously expressed genes. Apart from a discussion on classical thrombopathies, this review will also deal with the less commonly known relation between platelet signaling defects and disorders with a broader clinical phenotype.


Clinica Chimica Acta | 2010

A new approach to imprinting mutation detection in GNAS by Sequenom EpiTYPER system

Benedetta Izzi; Brigitte Decallonne; Koenraad Devriendt; Roger Bouillon; Dirk Vanderschueren; Elena Levtchenko; Francis de Zegher; Annick Van den Bruel; Diether Lambrechts; Christel Van Geet; Kathleen Freson

BACKGROUND Pseudohypoparathyroidism type Ib (PHPIb) results from abnormal imprinting of GNAS. Familial and sporadic forms of PHPIb have distinct GNAS imprinting patterns: familial PHPIb patients have an exon A/B-only imprinting defect and an intragenic STX16 deletion, whereas sporadic PHPIb cases have abnormal imprinting of the three differentially methylated regions (DMRs) in GNAS without the STX16 deletion. Overall GNAS methylation defects have recently been detected in some PHPIa patients. METHODS This study describes the first quantitative methylation analysis of multiple CpG sites for three different GNAS DMRs using the Sequenom EpiTYPER in 35 controls, 12 PHPIb patients, 2 PHPIa patients and 2 patients without parathormone (PTH) resistance but having only hypocalcemia and hyperphosphatemia. RESULTS All patients have GNAS methylation defects typically with NESP hypermethylation versus XL and exon A/B hypomethylation while the imprinting of SNURF/SNRPN was normal. PHPIa patients showed an abnormal methylation in the three DMRs of GNAS. For the first time, a marked abnormal GNAS methylation was also found in 2 patients without PTH resistance but having hypocalcemia and hyperphosphatemia. CONCLUSIONS The Sequenom EpiTYPER proves to be very sensitive in detecting DNA methylation changes. Our analysis also suggests that GNAS imprinting defects might be more frequent and diverse than previously thought.


Medical Epigenetics | 2014

Pyrosequencing Evaluation of Widely Available Bisulfite Conversion Methods: Considerations for Application

Benedetta Izzi; Alexandra M. Binder; Karin B. Michels

Introduction: Bisulfite treatment of DNA introduces methylation-dependent sequence changes through selective chemical conversion of nonmethylated cytosine to uracil and serves as pretreatment step for the majority of DNA methylation analysis methods. Methods: We have evaluated the conversion performance of five of the most commonly used bisulfite treatment kits [MethylDetector (Active Motif), Epitect+ (Qiagen), Zymo Methylation, Zymo Gold and Zymo Lightning (all from Zymo Research)] by pyrosequencing four different regions with variable methylation levels, including: a repetitive element (ALUSX), a gene with low levels of methylation (IL6ST), an imprinted gene expected to be approximately 50% methylated (IGF2), and a fully methylated gene (ST3GAL2). In addition, we have studied the influence of duration (3 vs. 16 h) and type (fixed temperature vs. cycling program) of incubation protocol on the conversion efficiency of each evaluated kit. Results: All kits produced similar conversion rates of ALUSX,IGF2 and ST3GAL2, while the conversion of the low methylated IL6ST gene was variable between kits. The Zymo kits were highly consistent in their performance even when different protocols of incubation were applied, generating full conversion at the low methylated gene IL6; this was not true for the MethylDetector and Epitect+ kits. However, long-cycling incubation could produce similar conversion rates for the same locus in combination with Active Motif and Qiagen kits. Conclusions: The selection of a long-cycling protocol during conversion permits standardization of protocols, improving the reproducibility of methylation estimates across laboratories for gene-specific, genome-wide and bisulfite-based sequencing analyses.


Psychosomatic Medicine | 2015

Chronic Fatigue Syndrome and DNA Hypomethylation of the Glucocorticoid Receptor Gene Promoter 1F Region: Associations With Hypothalamic-Pituitary-Adrenal Axis Hypofunction and Childhood Trauma

Elise Vangeel; Filip Van Den Eede; Titia Hompes; Benedetta Izzi; Jurgen Del Favero; Greta Moorkens; Diether Lambrechts; Kathleen Freson; Stephan Claes

Objectives Chronic fatigue syndrome (CFS) has been associated with hypothalamic-pituitary-adrenal axis hypofunction and enhanced glucocorticoid receptor (GR) sensitivity. In addition, childhood trauma is considered a major risk factor for the syndrome. This study examines DNA methylation of the GR gene (NR3C1) in CFS and associations with childhood sexual and physical trauma. Methods Quantification of DNA methylation within the 1F promoter region of NR3C1 was performed in 76 female patients (46 with no/mild and 30 with moderate/severe childhood trauma) and 19 healthy controls by using Sequenom EpiTYPER. Further, we examined the association of NR3C1-1F promoter methylation with the outcomes of the low-dose (0.5 mg) dexamethasone/corticotropin-releasing factor test in a subset of the study population. Mann-Whitney U tests and Spearman correlations were used for statistical analyses. Results Overall NR3C1-1F DNA methylation was lower in patients with CFS than in controls. After cytosine guanine dinucleotide (CpG)-specific analysis, CpG_1.5 remained significant after Bonferroni correction (adjusted p = .0014). Within the CFS group, overall methylation (&rgr; = 0.477, p = .016) and selective CpG units (CpG_1.5: &rgr; = 0.538, p = .007; CpG_12.13: &rgr; = 0.448, p = .025) were positively correlated with salivary cortisol after dexamethasone administration. There was no significant difference in NR3C1-1F methylation between traumatized and nontraumatized patients. Conclusions We found evidence of NR3C1 promoter hypomethylation in female patients with CFS and the functional relevance of these differences was consistent with the hypothalamic-pituitary-adrenalaxis hypofunction hypothesis (GR hypersuppression). However, we found no evidence of an additional effect of childhood trauma on CFS via alterations in NR3C1 methylation.

Collaboration


Dive into the Benedetta Izzi's collaboration.

Top Co-Authors

Avatar

Kathleen Freson

Catholic University of Leuven

View shared research outputs
Top Co-Authors

Avatar

Chris Van Geet

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Diether Lambrechts

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Elise Vangeel

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Christine Wittevrongel

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Stephan Claes

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Titia Hompes

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Marc Hoylaerts

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Francesca Elli

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar

Giovanna Mantovani

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Researchain Logo
Decentralizing Knowledge