Bénédicte Burlat
Aix-Marseille University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bénédicte Burlat.
Nature Chemical Biology | 2010
Pierre-Pol Liebgott; Fanny Leroux; Bénédicte Burlat; Sébastien Dementin; Carole Baffert; Thomas Lautier; Vincent Fourmond; Pierre Ceccaldi; Christine Cavazza; Isabelle Meynial-Salles; Philippe Soucaille; Juan C. Fontecilla-Camps; Bruno Guigliarelli; Patrick Bertrand; Marc Rousset; Christophe Léger
In hydrogenases and many other redox enzymes, the buried active site is connected to the solvent by a molecular channel whose structure may determine the enzymes selectivity with respect to substrate and inhibitors. The role of these channels has been addressed using crystallography and molecular dynamics, but kinetic data are scarce. Using protein film voltammetry, we determined and then compared the rates of inhibition by CO and O2 in ten NiFe hydrogenase mutants and two FeFe hydrogenases. We found that the rate of inhibition by CO is a good proxy of the rate of diffusion of O2 toward the active site. Modifying amino acids whose side chains point inside the tunnel can slow this rate by orders of magnitude. We quantitatively define the relations between diffusion, the Michaelis constant for H2 and rates of inhibition, and we demonstrate that certain enzymes are slowly inactivated by O2 because access to the active site is slow.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Fanny Leroux; Sébastien Dementin; Bénédicte Burlat; Laurent Cournac; Anne Volbeda; Stéphanie Champ; Lydie Martin; Bruno Guigliarelli; Patrick Bertrand; Juan C. Fontecilla-Camps; Marc Rousset; Christophe Léger
Hydrogenases, which catalyze H2 to H+ conversion as part of the bioenergetic metabolism of many microorganisms, are among the metalloenzymes for which a gas-substrate tunnel has been described by using crystallography and molecular dynamics. However, the correlation between protein structure and gas-diffusion kinetics is unexplored. Here, we introduce two quantitative methods for probing the rates of diffusion within hydrogenases. One uses protein film voltammetry to resolve the kinetics of binding and release of the competitive inhibitor CO; the other is based on interpreting the yield in the isotope exchange assay. We study structurally characterized mutants of a NiFe hydrogenase, and we show that two mutations, which significantly narrow the tunnel near the entrance of the catalytic center, decrease the rates of diffusion of CO and H2 toward and from the active site by up to 2 orders of magnitude. This proves the existence of a functional channel, which matches the hydrophobic cavity found in the crystal. However, the changes in diffusion rates do not fully correlate with the obstruction induced by the mutation and deduced from the x-ray structures. Our results demonstrate the necessity of measuring diffusion rates and emphasize the role of side-chain dynamics in determining these.
Extremophiles | 2003
Marianne Brugna-Guiral; Pascale Tron; Wolfgang Nitschke; Karl-Otto Stetter; Bénédicte Burlat; Bruno Guigliarelli; Mireille Bruschi; Marie Thérèse Giudici-Orticoni
Genes potentially coding for three distinct [NiFe] hydrogenases are present in the genome of Aquifex aeolicus. We have demonstrated that all three hydrogenases are expressed under standard growth conditions of the organism. Two hydrogenases were further purified to homogeneity. A periplasmically oriented hydrogenase was obtained in two forms, i.e., as a soluble enzyme containing only the two essential subunits and as a detergent-solubilized complex additionally containing a membrane-integral b-type cytochrome. The second hydrogenase purified was identified as a soluble cytoplasmic enzyme. The isolated enzymes were characterized with respect to biochemical/biophysical parameters, activity, thermostability, and substrate specificity. The phylogenetic positioning of all three hydrogenases was analyzed. A model for the metabolic roles of the three enzymes is proposed on the basis of the obtained results.
Journal of the American Chemical Society | 2009
Sébastien Dementin; Fanny Leroux; Laurent Cournac; Antonio L. De Lacey; Anne Volbeda; Christophe Léger; Bénédicte Burlat; Nicolas Martinez; Stéphanie Champ; Lydie Martin; Oliver Sanganas; Michael Haumann; Victor M. Fernandez; Bruno Guigliarelli; Juan C. Fontecilla-Camps; Marc Rousset
Hydrogenases catalyze the conversion between 2H(+) + 2e(-) and H(2)(1). Most of these enzymes are inhibited by O(2), which represents a major drawback for their use in biotechnological applications. Improving hydrogenase O(2) tolerance is therefore a major contemporary challenge to allow the implementation of a sustainable hydrogen economy. We succeeded in improving O(2) tolerance, which we define here as the ability of the enzyme to resist for several minutes to O(2) exposure, by substituting with methionines small hydrophobic residues strongly conserved in the gas channel. Remarkably, the mutated enzymes remained active in the presence of an O(2) concentration close to that found in aerobic solutions in equilibrium with air, while the wild type enzyme is inhibited in a few seconds. Crystallographic and spectroscopic studies showed that the structure and the chemistry at the active site are not affected by the mutations. Kinetic studies demonstrated that the inactivation is slower and reactivation faster in these mutants. We propose that in addition to restricting O(2) diffusion to the active site of the enzyme, methionine may also interact with bound peroxide and provide an assisted escape route for H(2)O(2) toward the gas channel. These results show for the first time that it is possible to improve O(2)-tolerance of [NiFe] hydrogenases, making possible the development of biohydrogen production systems.
Journal of Biological Chemistry | 2008
Jessica H. van Wonderen; Bénédicte Burlat; David J. Richardson; Myles R. Cheesman; Julea N. Butt
Cytochrome c nitrite reductase (NrfA) from Escherichia coli has a well established role in the respiratory reduction of nitrite to ammonium. More recently the observation that anaerobically grown E. coli nrf mutants were more sensitive to NO· than the parent strain led to the proposal that NrfA might also participate in NO· detoxification. Here we describe protein film voltammetry that presents a quantitative description of NrfA NO· reductase activity. NO· reduction is initiated at similar potentials to NrfA-catalyzed reduction of nitrite and hydroxylamine. All three activities are strongly inhibited by cyanide. Together these results suggest a common site for reduction of all three substrates as axial ligands to the lysine-coordinated NrfA heme rather than nonspecific NO· reduction at one of the four His-His coordinated hemes also present in each NrfA subunit. NO· reduction by NrfA is described by a Km of the order of 300 μm. The predicted turnover number of ∼840 NO· s–1 is much higher than that of the dedicated respiratory NO· reductases of denitrification and the flavorubredoxin and flavohemoglobin of E. coli that are also proposed to play roles in NO· detoxification. In considering the manner by which anaerobically growing E. coli might detoxify exogenously generated NO· encountered during invasion of a human host it appears that the periplasmically located NrfA should be effective in maintaining low NO· levels such that any NO· reaching the cytoplasm is efficiently removed by flavorubredoxin (Km ∼ 0.4 μm).
Journal of the American Chemical Society | 2011
Pierre-Pol Liebgott; Antonio L. De Lacey; Bénédicte Burlat; Laurent Cournac; Pierre Richaud; Myriam Brugna; Victor M. Fernandez; Bruno Guigliarelli; Marc Rousset; Christophe Léger; Sébastien Dementin
Hydrogenases are efficient biological catalysts of H(2) oxidation and production. Most of them are inhibited by O(2), and a prerequisite for their use in biotechnological applications under air is to improve their oxygen tolerance. We have previously shown that exchanging the residue at position 74 in the large subunit of the oxygen-sensitive [NiFe] hydrogenase from Desulfovibrio fructosovorans could impact the reaction of the enzyme with O(2) (Dementin, S.; J. Am. Chem. Soc. 2009, 131, 10156-10164; Liebgott, P. P.; Nat. Chem. Biol. 2010, 6, 63-70). This residue, a valine in the wild-type enzyme, located at the bottleneck of the gas channel near the active site, has here been exchanged with a cysteine. A thorough characterization using a combination of kinetic, spectroscopic (EPR, FTIR), and electrochemical studies demonstrates that the V74C mutant has features of the naturally occurring oxygen-tolerant membrane-bound hydrogenases (MBH). The mutant is functional during several minutes under O(2), has impaired H(2)-production activity, and has a weaker affinity for CO than the WT. Upon exposure to O(2), it is converted into the more easily reactivatable inactive form, Ni-B, and this inactive state reactivates about 20 times faster than in the WT enzyme. Control experiments carried out with the V74S and V74N mutants indicate that protonation of the position 74 residue is not the reason the mutants reactivate faster than the WT enzyme. The electrochemical behavior of the V74C mutant toward O(2) is intermediate between that of the WT enzyme from D. fructosovorans and the oxygen-tolerant MBH from Aquifex aeolicus.
Nature Chemical Biology | 2013
Abbas Abou Hamdan; Bénédicte Burlat; Oscar Gutiérrez-Sanz; Pierre-Pol Liebgott; Carole Baffert; Antonio L. De Lacey; Marc Rousset; Bruno Guigliarelli; Christophe Léger; Sébastien Dementin
We studied the mechanism of aerobic inactivation of Desulfovibrio fructosovorans nickel-iron (NiFe) hydrogenase by quantitatively examining the results of electrochemistry, EPR and FTIR experiments. They suggest that, contrary to the commonly accepted mechanism, the attacking O(2) is not incorporated as an active site ligand but, rather, acts as an electron acceptor. Our findings offer new ways toward the understanding of O(2) inactivation and O(2) tolerance in NiFe hydrogenases.
Journal of the American Chemical Society | 2011
Sébastien Dementin; Bénédicte Burlat; Vincent Fourmond; Fanny Leroux; Pierre-Pol Liebgott; Abbas Abou Hamdan; Christophe Léger; Marc Rousset; Bruno Guigliarelli; Patrick Bertrand
Electrons are transferred over long distances along chains of FeS clusters in hydrogenases, mitochondrial complexes, and many other respiratory enzymes. It is usually presumed that electron transfer is fast in these systems, despite the fact that there has been no direct measurement of rates of FeS-to-FeS electron transfer in any respiratory enzyme. In this context, we propose and apply to NiFe hydrogenase an original strategy that consists of quantitatively interpreting the variations of steady-state activity that result from changing the nature of the FeS clusters which connect the active site to the redox partner, and/or the nature of the redox partner. Rates of intra- and intermolecular electron transfer are deduced from such large data sets. The mutation-induced variations of electron transfer rates cannot be explained by changes in intercenter distances and reduction potentials. This establishes that FeS-to-FeS rate constants are extremely sensitive to the nature and coordination of the centers.
Journal of the American Chemical Society | 2015
Colin W. J. Lockwood; Bénédicte Burlat; Myles R. Cheesman; Melanie Kern; Jörg Simon; Thomas A. Clarke; David J. Richardson; Julea N. Butt
Cytochrome c nitrite reductases perform a key step in the biogeochemical N-cycle by catalyzing the six-electron reduction of nitrite to ammonium. These multiheme cytochromes contain a number of His/His ligated c-hemes for electron transfer and a structurally differentiated heme that provides the catalytic center. The catalytic heme has proximal ligation from lysine, or histidine, and an exchangeable distal ligand bound within a pocket that includes a conserved histidine. Here we describe properties of a penta-heme cytochrome c nitrite reductase in which the distal His has been substituted by Asn. The variant is unable to catalyze nitrite reduction despite retaining the ability to reduce a proposed intermediate in that process, namely, hydroxylamine. A combination of electrochemical, structural and spectroscopic studies reveals that the variant enzyme simultaneously binds nitrite and electrons at the catalytic heme. As a consequence the distal His is proposed to play a key role in orienting the nitrite for N-O bond cleavage. The electrochemical experiments also reveal that the distal His facilitates rapid nitrite binding to the catalytic heme of the native enzyme. Finally it is noted that the thermodynamic descriptions of nitrite- and electron-binding to the active site of the variant enzyme are modulated by the prevailing oxidation states of the His/His ligated hemes. This behavior is likely to be displayed by other multicentered redox enzymes such that there are wide implications for considering the determinants of catalytic activity in this important and varied group of oxidoreductases.
Biochimica et Biophysica Acta | 2014
Julien G.J. Jacques; Bénédicte Burlat; Pascal Arnoux; Monique Sabaty; Bruno Guigliarelli; Christophe Léger; Vincent Fourmond
Periplasmic nitrate reductase catalyzes the reduction of nitrate into nitrite using a mononuclear molybdenum cofactor that has nearly the same structure in all enzymes of the DMSO reductase family. In previous electrochemical investigations, we found that the enzyme exists in several inactive states, some of which may have been previously isolated and mistaken for catalytic intermediates. In particular, the enzyme slowly and reversibly inactivates when exposed to high concentrations of nitrate. Here, we study the kinetics of substrate inhibition and its dependence on electrode potential and substrate concentration to learn about the properties of the active and inactive forms of the enzyme. We conclude that the substrate-inhibited enzyme never significantly accumulates in the EPR-active Mo(+V) state. This conclusion is relevant to spectroscopic investigations where attempts are made to trap a Mo(+V) catalytic intermediate using high concentrations of nitrate.