Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Beng San Yeoh is active.

Publication


Featured researches published by Beng San Yeoh.


Nature Communications | 2015

Interplay between enterobactin, myeloperoxidase and lipocalin 2 regulates E. coli survival in the inflamed gut.

Vishal Singh; Beng San Yeoh; Xia Xiao; Manish Kumar; Michael Bachman; Niels Borregaard; Bina Joe; Matam Vijay-Kumar

During an inflammatory response in the gut, some commensal bacteria such as E. coli can thrive and contribute to disease. Here we demonstrate that enterobactin (Ent), a catecholate siderophore released by E. coli, is a potent inhibitor of myeloperoxidase (MPO), a bactericidal enzyme of the host. Glycosylated Ent (salmochelin) and non-catecholate siderophores (yersiniabactin and ferrichrome) fail to inhibit MPO activity. An E. coli mutant (ΔfepA) that overproduces Ent, but not an Ent-deficient double mutant (ΔaroB/ΔfepA), inhibits MPO activity and exhibits enhanced survival in inflamed guts. This survival advantage is counter-regulated by lipocalin 2, a siderophore-binding host protein, which rescues MPO from Ent-mediated inhibition. Spectral analysis reveals that Ent interferes with compound I [oxoiron, Fe(IV)=O] and reverts the enzyme back to its native ferric [Fe(III)] state. These findings define a fundamental mechanism by which E. coli surpasses the host innate immune responses during inflammatory gut diseases and gains a distinct survival advantage.


PLOS ONE | 2016

Gut Microbiota Conversion of Dietary Ellagic Acid into Bioactive Phytoceutical Urolithin A Inhibits Heme Peroxidases.

Piu Saha; Beng San Yeoh; Rajbir Singh; Bhargavi Chandrasekar; Praveen Kumar Vemula; Bodduluri Haribabu; Matam Vijay-Kumar; Venkatakrishna R. Jala

Numerous studies signify that diets rich in phytochemicals offer many beneficial functions specifically during pathologic conditions, yet their effects are often not uniform due to inter-individual variation. The host indigenous gut microbiota and their modifications of dietary phytochemicals have emerged as factors that greatly influence the efficacy of phytoceutical-based intervention. Here, we investigated the biological activities of one such active microbial metabolite, Urolithin A (UA or 3,8-dihydroxybenzo[c]chromen-6-one), which is derived from the ellagic acid (EA). Our study demonstrates that UA potently inhibits heme peroxidases i.e. myeloperoxidase (MPO) and lactoperoxidase (LPO) when compared to the parent compound EA. In addition, chrome azurol S (CAS) assay suggests that EA, but not UA, is capable of binding to Fe3+, due to its catechol-like structure, although its modest heme peroxidase inhibitory activity is abrogated upon Fe3+-binding. Interestingly, UA-mediated MPO and LPO inhibition can be prevented by innate immune protein human NGAL or its murine ortholog lipocalin 2 (Lcn2), implying the complex nature of host innate immunity-microbiota interactions. Spectral analysis indicates that UA inhibits heme peroxidase-catalyzed reaction by reverting the peroxidase back to its inactive native state. In support of these in vitro results, UA significantly reduced phorbol myristate acetate (PMA)-induced superoxide generation in neutrophils, however, EA failed to block the superoxide generation. Treatment with UA significantly reduced PMA-induced mouse ear edema and MPO activity compared to EA treated mice. Collectively, our results demonstrate that microbiota-mediated conversion of EA to UA is advantageous to both host and microbiota i.e. UA-mediated inhibition of pro-oxidant enzymes reduce tissue inflammation, mitigate non-specific killing of gut bacteria, and abrogate iron-binding property of EA, thus providing a competitive edge to the microbiota in acquiring limiting nutrient iron and thrive in the gut.


Cellular and molecular gastroenterology and hepatology | 2016

Microbiota-Inducible Innate Immune Siderophore Binding Protein Lipocalin 2 Is Critical for Intestinal Homeostasis

Vishal Singh; Beng San Yeoh; Benoit Chassaing; Benyue Zhang; Piu Saha; Xia Xiao; Deepika Awasthi; Rangaiah Shashidharamurthy; Madhu Dikshit; Andrew T. Gewirtz; Matam Vijay-Kumar

Background & Aims Lipocalin 2 (Lcn2) is a multifunctional innate immune protein whose expression closely correlates with the extent of intestinal inflammation. However, whether Lcn2 plays a role in the pathogenesis of gut inflammation is unknown. Herein, we investigated the extent to which Lcn2 regulates inflammation and gut bacterial dysbiosis in mouse models of IBD. Methods Lcn2 expression was monitored in murine colitis models and upon microbiota ablation/restoration. Wild-type (WT) and Lcn2 knockout (Lcn2KO) mice were analyzed for gut bacterial load, composition by 16S ribosomal RNA gene pyrosequencing, and their colitogenic potential by co-housing with interleukin (Il)10KO mice. Acute (dextran sodium sulfate) and chronic (IL10R neutralization and T-cell adoptive transfer) colitis were induced in WT and Lcn2KO mice with or without antibiotics. Results Lcn2 expression was dramatically induced on inflammation and was dependent on the presence of a gut microbiota and MyD88 signaling. Use of bone marrow–chimeric mice showed that nonimmune cells are the major contributors of circulating Lcn2. Lcn2KO mice showed increased levels of entA-expressing gut bacteria burden, and, moreover, a broadly distinct bacterial community relative to WT littermates. Lcn2KO mice developed highly colitogenic T cells and showed exacerbated colitis on exposure to DSS or neutralization of IL10. Such exacerbated colitis could be prevented by antibiotic treatment. Moreover, exposure to the microbiota of Lcn2KO mice, via cohousing, resulted in severe colitis in Il10KO mice. Conclusions Lcn2 is a bacterially induced, MyD88-dependent protein that plays an important role in gut homeostasis and a pivotal role on challenge. Hence, therapeutic manipulation of Lcn2 levels may provide a strategy to help manage diseases driven by alteration of the gut microbiota.


Gut microbes | 2015

Proneness of TLR5 deficient mice to develop colitis is microbiota dependent

Vishal Singh; Beng San Yeoh; Frederic A. Carvalho; Andrew T. Gewirtz; Matam Vijay-Kumar

Alterations in the gut microbiota have been implicated to play a role in potentiating inflammatory bowel diseases in both humans and mice. Mice lacking the flagellin receptor, toll-like receptor 5 (TLR5), are prone to develop spontaneous gut inflammation, but are significantly protected when treated with antibiotics or maintained in germ-free conditions. However, given that the incidence of spontaneous inflammation in TLR5KO mice is quite variable in conventional conditions (typically ∼10% show clear colitis), this result is far from definitive and does not rule out that TLR5KO mice might be prone to develop inflammation even in the absence of a microbiota. Herein, we demonstrate that neutralization of IL10 signaling induces colitis in 100% of TLR5KO mice which provide a more rigorous approach to evaluate the role of microbiota in gut inflammation. Mice treated with antibiotics or maintained in germ-free condition are substantially protected against IL-10R neutralization-induced colitis, underscoring that gut inflammation in TLR5KO mice is dependent upon the presence of a gut microbiota.


American Journal of Pathology | 2016

Epigallocatechin-3-Gallate Inhibition of Myeloperoxidase and Its Counter-Regulation by Dietary Iron and Lipocalin 2 in Murine Model of Gut Inflammation.

Beng San Yeoh; Rodrigo Aguilera Olvera; Vishal Singh; Xia Xiao; Mary J. Kennett; Bina Joe; Joshua D. Lambert; Matam Vijay-Kumar

Green tea-derived polyphenol (-)-epigallocatechin-3-gallate (EGCG) has been extensively studied for its antioxidant and anti-inflammatory properties in models of inflammatory bowel disease, yet the underlying molecular mechanism is not completely understood. Herein, we demonstrate that EGCG can potently inhibit the proinflammatory enzyme myeloperoxidase in vitro in a dose-dependent manner over a range of physiologic temperatures and pH values. The ability of EGCG to mediate its inhibitory activity is counter-regulated by the presence of iron and lipocalin 2. Spectral analysis indicated that EGCG prevents the peroxidase-catalyzed reaction by reverting the reactive peroxidase heme (compound I:oxoiron) back to its native inactive ferric state, possibly via the exchange of electrons. Further, administration of EGCG to dextran sodium sulfate-induced colitic mice significantly reduced the colonic myeloperoxidase activity and alleviated proinflammatory mediators associated with gut inflammation. However, the efficacy of EGCG against gut inflammation is diminished when orally coadministered with iron. These findings indicate that the ability of EGCG to inhibit myeloperoxidase activity is one of the mechanisms by which it exerts mucoprotective effects and that counter-regulatory factors such as dietary iron and luminal lipocalin 2 should be taken into consideration for optimizing clinical management strategies for inflammatory bowel disease with the use of EGCG treatment.


Inflammatory Bowel Diseases | 2016

Inhibition of Interleukin-10 Signaling Induces Microbiota-dependent Chronic Colitis in Apolipoprotein E Deficient Mice.

Vishal Singh; Manish Kumar; Beng San Yeoh; Xia Xiao; Piu Saha; Mary J. Kennett; Matam Vijay-Kumar

Background:Apolipoprotein E (ApoE) mediates potent antiinflammatory and immunomodulatory properties in addition to its roles in regulating cholesterol transport and metabolism. However, its role in the intestine, specifically during inflammation, is largely unknown. Methods:Mice (C57BL/6 or ApoE-deficient [ApoE-KO] mice) were administered either single or 4 injections (weekly) of anti-interleukin (IL)-10 receptor monoclonal antibody (1.0 mg/mouse; intraperitoneally) and euthanized 1 week after the last injection. 16S rRNA sequencing was performed in fecal samples to analyze the gut bacterial load and its composition. Microbiota was ablated by administration of broad-spectrum antibiotics in drinking water. IL-10KO mice were cohoused with ApoE-KO mice or their wild-type littermates to monitor the colitogenic potential of gut microbiota harbored in ApoE-KO mice. Results:ApoE-KO mice developed severe colitis upon neutralization of IL-10 signaling as assessed by every parameter analyzed. 16S rRNA sequencing revealed that the ApoE-KO mice display elevated and altered gut microbiota that were accompanied with impaired production of intestinal antimicrobial peptides. Interestingly, microbiota ablation ameliorates colitis development in ApoE-KO mice. Exacerbated and accelerated colitis was observed in IL-10KO mice when cohoused with ApoE-KO mice. Conclusions:Our study highlights a novel interplay between ApoE and IL-10 in maintaining gut homeostasis and that such crosstalk may play a critical role in the pathogenesis of inflammatory bowel disease. Gut sterilization and the cohousing experiment suggest that microbiota play a pivotal role in the development of inflammatory bowel disease in mice lacking ApoE.


Biometals | 2016

Lipocalin 2 alleviates iron toxicity by facilitating hypoferremia of inflammation and limiting catalytic iron generation.

Xia Xiao; Beng San Yeoh; Piu Saha; Rodrigo Aguilera Olvera; Vishal Singh; Matam Vijay-Kumar

Iron is an essential transition metal ion for virtually all aerobic organisms, yet its dysregulation (iron overload or anemia) is a harbinger of many pathologic conditions. Hence, iron homeostasis is tightly regulated to prevent the generation of catalytic iron (CI) which can damage cellular biomolecules. In this study, we investigated the role of iron-binding/trafficking innate immune protein, lipocalin 2 (Lcn2, aka siderocalin) on iron and CI homeostasis using Lcn2 knockout (KO) mice and their WT littermates. Administration of iron either systemically or via dietary intake strikingly upregulated Lcn2 in the serum, urine, feces, and liver of WT mice. However, similarly-treated Lcn2KO mice displayed elevated CI, augmented lipid peroxidation and other indices of organ damage markers, implicating that Lcn2 responses may be protective against iron-induced toxicity. Herein, we also show a negative association between serum Lcn2 and CI in the murine model of dextran sodium sulfate (DSS)-induced colitis. The inability of DSS-treated Lcn2KO mice to elicit hypoferremic response to acute colitis, implicates the involvement of Lcn2 in iron homeostasis during inflammation. Using bone marrow chimeras, we further show that Lcn2 derived from both immune and non-immune cells participates in CI regulation. Remarkably, exogenous rec-Lcn2 supplementation suppressed CI levels in Lcn2KO serum and urine. Collectively, our results suggest that Lcn2 may facilitate hypoferremia, suppress CI generation and prevent iron-mediated adverse effects.


Journal of Immunology | 2017

Bacterial Siderophores Hijack Neutrophil Functions

Piu Saha; Beng San Yeoh; Rodrigo Aguilera Olvera; Xia Xiao; Vishal Singh; Deepika Awasthi; Bhagawat C. Subramanian; Qiuyan Chen; Madhu Dikshit; Yanming Wang; Carole A. Parent; Matam Vijay-Kumar

Neutrophils are the primary immune cells that respond to inflammation and combat microbial transgression. To thrive, the bacteria residing in their mammalian host have to withstand the antibactericidal responses of neutrophils. We report that enterobactin (Ent), a catecholate siderophore expressed by Escherichia coli, inhibited PMA-induced generation of reactive oxygen species (ROS) and neutrophil extracellular traps (NETs) in mouse and human neutrophils. Ent also impaired the degranulation of primary granules and inhibited phagocytosis and bactericidal activity of neutrophils, without affecting their migration and chemotaxis. Molecular analysis revealed that Ent can chelate intracellular labile iron that is required for neutrophil oxidative responses. Other siderophores (pyoverdine, ferrichrome, deferoxamine) likewise inhibited ROS and NETs in neutrophils, thus indicating that the chelation of iron may largely explain their inhibitory effects. To counter iron theft by Ent, neutrophils rely on the siderophore-binding protein lipocalin 2 (Lcn2) in a “tug-of-war” for iron. The inhibition of neutrophil ROS and NETs by Ent was augmented in Lcn2-deficient neutrophils compared with wild-type neutrophils but was rescued by the exogenous addition of recombinant Lcn2. Taken together, our findings illustrate the novel concept that microbial siderophore’s iron-scavenging property may serve as an antiradical defense system that neutralizes the immune functions of neutrophils.


Journal of Nutritional Biochemistry | 2017

Modulation of urinary siderophores by the diet, gut microbiota and inflammation in mice

Xia Xiao; Beng San Yeoh; Piu Saha; Yuan Tian; Vishal Singh; Andrew D. Patterson; Matam Vijay-Kumar

Mammalian siderophores are believed to play a critical role in maintaining iron homeostasis. However, the properties and functions of mammalian siderophores have not been fully clarified. In this study, we have employed Chrome Azurol S (CAS) assay which is a well-established method for bacterial siderophores study, to detect and quantify mammalian siderophores in urine samples. Our study demonstrates that siderophores in urine can be altered by diet, gut microbiota and inflammation. C57BL/6 mice, fed on plant-based chow diets which contain numerous phytochemicals, have more siderophores in the urine compared to those fed on purified diets. Urinary siderophores were up-regulated in iron overload conditions, but not altered by other tested nutrients status. Further, germ-free mice displayed 50% reduced urinary siderophores, in comparison to conventional mice, indicating microbiota biotransformation is critical in generating or stimulating host metabolism to create more siderophores. Altered urinary siderophores levels during inflammation suggest that host health conditions influence systemic siderophores level. This is the first report to measure urinary siderophores as a whole, describing how siderophores levels are modulated under different physiological conditions. We believe that our study opens up a new field in mammalian siderophores research and the technique we used in a novel manner has the potential to be applied to clinical purpose.


Data in Brief | 2016

Data on importance of hematopoietic cell derived Lipocalin 2 against gut inflammation

Piu Saha; Vishal Singh; Xia Xiao; Beng San Yeoh; Matam Vijay-Kumar

The data herein is related to the research article entitled “Microbiota-inducible innate immune siderophore binding protein Lipocalin 2 is critical for intestinal homeostasis” (Singh et al., 2016) [1]. In the present article, we monitored dextran sodium sulfate (DSS)-induced colitis development upon Lipocalin 2 (Lcn2) neutralization, and examined the survival of Lcn2 deficient (Lcn2KO) mice and their WT littermates upon DSS challenge. To dissect the relative contribution of immune and non-immune cells-derived Lcn2 in mediating protection against gut inflammation, we generated respective bone marrow chimera and evaluated their susceptibility to IL-10 receptor neutralization-induced chronic colitis. Neutralization of Lcn2 in WT mice resulted in exacerbated DSS-induced colitis. Notably, mice lacking Lcn2 exhibited 100% mortality whereas only 20% mortality was observed in WT mice upon DSS challenge. Further, data from bone marrow chimera showed that immune cell-derived Lcn2 is the major contributor in conferring protection against colitis.

Collaboration


Dive into the Beng San Yeoh's collaboration.

Top Co-Authors

Avatar

Matam Vijay-Kumar

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Vishal Singh

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Xia Xiao

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Piu Saha

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Bina Joe

University of Toledo

View shared research outputs
Top Co-Authors

Avatar

Mary J. Kennett

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew D. Patterson

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge