Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matam Vijay-Kumar is active.

Publication


Featured researches published by Matam Vijay-Kumar.


Science | 2010

Metabolic Syndrome and Altered Gut Microbiota in Mice Lacking Toll-Like Receptor 5

Matam Vijay-Kumar; Jesse D. Aitken; Frederic A. Carvalho; Tyler C. Cullender; Simon M. Mwangi; Shanthi Srinivasan; Shanthi V. Sitaraman; Rob Knight; Ruth E. Ley; Andrew T. Gewirtz

Debugging Metabolic Disease Obesity, now officially recognized as an epidemic in many developed nations, is a key component of “metabolic syndrome,” an array of metabolic disturbances that increase an individuals risk of developing diabetes and heart disease. The rise in obesity rates has been largely attributed to the growing imbalance between food intake and energy expenditure, but recent provocative work has suggested a possible link between obesity and the composition of microbes residing within the gut. Vijay-Kumar et al. (p. 228, published online 4 March; see the Perspective by Sandoval and Seeley) now find that mutant mice deficient in a component of the innate immune system (which defends the body against microbial pathogens) develop hallmark features of metabolic syndrome, accompanied by changes in gut microbiota. Notably, transfer of gut microbiota from the mutant mice to wild-type mice conferred several features of metabolic syndrome to the recipients. Thus, the development of metabolic syndrome may indeed be influenced by gut microbes that are regulated by the innate immune system. The innate immune system may promote metabolic health through effects on gut microbes. Metabolic syndrome is a group of obesity-related metabolic abnormalities that increase an individual’s risk of developing type 2 diabetes and cardiovascular disease. Here, we show that mice genetically deficient in Toll-like receptor 5 (TLR5), a component of the innate immune system that is expressed in the gut mucosa and that helps defend against infection, exhibit hyperphagia and develop hallmark features of metabolic syndrome, including hyperlipidemia, hypertension, insulin resistance, and increased adiposity. These metabolic changes correlated with changes in the composition of the gut microbiota, and transfer of the gut microbiota from TLR5-deficient mice to wild-type germ-free mice conferred many features of metabolic syndrome to the recipients. Food restriction prevented obesity, but not insulin resistance, in the TLR5-deficient mice. These results support the emerging view that the gut microbiota contributes to metabolic disease and suggest that malfunction of the innate immune system may promote the development of metabolic syndrome.


Journal of Clinical Investigation | 2007

Deletion of TLR5 results in spontaneous colitis in mice

Matam Vijay-Kumar; Catherine Sanders; Rebekah T. Taylor; Amrita Kumar; Jesse D. Aitken; Shanthi V. Sitaraman; Andrew S. Neish; Satoshi Uematsu; Shizuo Akira; Ifor R. Williams; Andrew T. Gewirtz

Activation of TLRs by bacterial products results in rapid activation of genes encoding products designed to protect the host from perturbing microbes. In the intestine, which is colonized by a large and diverse population of commensal bacteria, TLR signaling may not function in a simple on/off mode. Here, we show that the flagellin receptor TLR5 has an essential and nonredundant role in protecting the gut from enteric microbes. Mice lacking TLR5 (TLR5KO mice) developed spontaneous colitis, as assessed by well-defined clinical, serologic, and histopathologic indicators of this disorder. Compared with WT littermates, TLR5KO mice that had not yet developed robust colitis exhibited decreased intestinal expression of TLR5-regulated host defense genes despite having an increased bacterial burden in the colon. In contrast, such TLR5KO mice displayed markedly increased colonic expression of hematopoietic-derived proinflammatory cytokines, suggesting that elevated levels of bacterial products may result in activation of other TLRs that drive colitis in TLR5KO mice. In accordance, deletion of TLR4 rescued the colitis of TLR5KO mice in that mice lacking both TLR4 and TLR5 also had elevated bacterial loads in the colon but lacked immunological, histopathological, and clinical evidence of colitis. That an engineered innate immune deficiency ultimately results in spontaneous intestinal inflammation supports the notion that an innate immune deficiency might underlie some instances of inflammatory bowel disease.


Current protocols in immunology | 2014

Dextran sulfate sodium (DSS)-induced colitis in mice.

Benoit Chassaing; Jesse D. Aitken; Madhu Malleshappa; Matam Vijay-Kumar

Inflammatory bowel diseases (IBD), mainly comprising ulcerative colitis and Crohns Disease, are complex and multifactorial diseases with unknown etiology. For the past 20 years, to study human IBD mechanistically, a number of murine models of colitis have been developed. These models are indispensable tools to decipher underlying mechanisms of IBD pathogenesis as well as to evaluate a number of potential therapeutics. Among various chemically induced colitis models, the dextran sulfate sodium (DSS)‐induced colitis model is widely used because of its simplicity and many similarities with human ulcerative colitis. This model has both advantages and disadvantages that must be considered when employed. This protocol describes the DSS‐induced colitis model, focusing on details and factors that could affect DSS‐induced pathology. Curr. Protoc. Immunol. 104:15.25.1‐15.25.14.


Cell Host & Microbe | 2012

Transient Inability to Manage Proteobacteria Promotes Chronic Gut Inflammation in TLR5-Deficient Mice

Frederic A. Carvalho; Omry Koren; Julia K. Goodrich; Malin E. V. Johansson; ILKe Nalbantoglu; Jesse D. Aitken; Yueju Su; Benoit Chassaing; William A. Walters; Antonio Gonzalez; Jose C. Clemente; Tyler C. Cullender; Nicolas Barnich; Arlette Darfeuille-Michaud; Matam Vijay-Kumar; Rob Knight; Ruth E. Ley; Andrew T. Gewirtz

Colitis results from breakdown of homeostasis between intestinal microbiota and the mucosal immune system, with both environmental and genetic influencing factors. Flagellin receptor TLR5-deficient mice (T5KO) display elevated intestinal proinflammatory gene expression and colitis with incomplete penetrance, providing a genetically sensitized system to study the contribution of microbiota to driving colitis. Both colitic and noncolitic T5KO exhibited transiently unstable microbiotas, with lasting differences in colitic T5KO, while their noncolitic siblings stabilized their microbiotas to resemble wild-type mice. Transient high levels of proteobacteria, especially enterobacteria species including E. coli, observed in close proximity to the gut epithelium were a striking feature of colitic microbiota. A Crohns disease-associated E. coli strain induced chronic colitis in T5KO, which persisted well after the exogenously introduced bacterial species had been eliminated. Thus, an innate immune deficiency can result in unstable gut microbiota associated with low-grade inflammation, and harboring proteobacteria can drive and/or instigate chronic colitis.


Journal of Immunology | 2008

Flagellin Treatment Protects against Chemicals, Bacteria, Viruses, and Radiation

Matam Vijay-Kumar; Jesse D. Aitken; Catherine Sanders; Amena H. Frias; Valerie Sloane; Jianguo Xu; Andrew S. Neish; Mauricio Rojas; Andrew T. Gewirtz

Sudden exposure of human populations to chemicals, pathogens, or radiation has the potential to result in substantial morbidity. A potential means of rapidly protecting such populations might be to activate innate host defense pathways, which can provide broad protection against a variety of insults. However, innate immune activators can, by themselves, result in severe inflammatory pathology, which in large part is driven by hemopoietic-derived cytokines such as TNF-α. We reasoned that, because it preferentially activates epithelial cells, the TLR5 agonist flagellin might not induce severe inflammatory pathology and yet be an ideal agent to provide such non-specific protection, particularly at the mucosal surfaces that serve as a front line of host defense. In accordance, we observed that systemic treatment of mice with purified flagellin did not induce the serologic, histopathologic, and clinical hallmarks of inflammation that are induced by LPS but yet protected mice against chemicals, pathogens, and ionizing radiation. Flagellin-elicited radioprotection required TLR5, the TLR signaling adaptor MyD88, and was effective if given between 2 h before to 4 h after exposure to irradiation. Flagellin-elicited radioprotection was, in part, mediated via effects on cells in bone marrow but yet rescued mortality without a pronounced rescue of radiation-induced anemia or leukopenia. Thus, systemic administration of flagellin may be a relatively safe means of providing temporary non-specific protection against a variety of challenges.


Cell Host & Microbe | 2013

Innate and Adaptive Immunity Interact to Quench Microbiome Flagellar Motility in the Gut

Tyler C. Cullender; Benoit Chassaing; Anders Janzon; Krithika Kumar; Catherine E. Muller; Jeffrey J. Werner; Largus T. Angenent; M. Elizabeth Bell; Anthony G. Hay; Daniel A. Peterson; Jens Walter; Matam Vijay-Kumar; Andrew T. Gewirtz; Ruth E. Ley

Gut mucosal barrier breakdown and inflammation have been associated with high levels of flagellin, the principal bacterial flagellar protein. Although several gut commensals can produce flagella, flagellin levels are low in the healthy gut, suggesting the existence of control mechanisms. We find that mice lacking the flagellin receptor Toll-like receptor 5 (TLR5) exhibit a profound loss of flagellin-specific immunoglobulins (Igs) despite higher total Ig levels in the gut. Ribotyping of IgA-coated cecal microbiota showed Proteobacteria evading antibody coating in the TLR5(-/-) gut. A diversity of microbiome members overexpressed flagellar genes in the TLR5(-/-) host. Proteobacteria and Firmicutes penetrated small intestinal villi, and flagellated bacteria breached the colonic mucosal barrier. In vitro, flagellin-specific Ig inhibited bacterial motility and downregulated flagellar gene expression. Thus, innate-immunity-directed development of flagellin-specific adaptive immune responses can modulate the microbiomes production of flagella in a three-way interaction that helps to maintain mucosal barrier integrity and homeostasis.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2009

Matrix metalloproteinase-9-mediated tissue injury overrides the protective effect of matrix metalloproteinase-2 during colitis

Pallavi Garg; Matam Vijay-Kumar; Lixin Wang; Andrew T. Gewirtz; Didier Merlin; Shanthi V. Sitaraman

Matrix metalloproteinases (MMP) play an important role in pathogenesis of inflammatory bowel disease (IBD). Two known gelatinases, MMP-2 and MMP-9, are upregulated during IBD. Epithelial-derived MMP-9 is an important mediator of tissue injury in colitis, whereas MMP-2 protects against tissue damage and maintains gut barrier function. It has been suggested that developing strategies to block MMP-9 activity in the gut might be of benefit to IBD. However, given that MMP-2 and MMP-9 are structurally similar, such approaches would also likely inhibit MMP-2. Thus, to gain insight into outcome of inhibiting both MMP-2 and MMP-9, MMP-2(-/-)/MMP-9(-/-) double knockout mice (dKO) lacking both MMP-2 and MMP-9 were used in this study. Three models of murine colitis were used: dextran sodium sulfate (DSS), Salmonella typhimurium (S.T.), and trinitrobenzene sulfonic acid (TNBS). Our data demonstrate that MMP-2 and MMP-9 activities were highly upregulated in wild-type (WT) mice treated with DSS, S.T., or TNBS whereas dKO mice were resistant to the development of colitis. WT mice had extensive inflammation and tissue damage compared with dKO mice as suggested by histological assessment and myeloperoxidase activity. In conclusion, these results suggest an overriding role of MMP-9 in mediating tissue injury compared with the protective role of MMP-2 in development of colitis. Thus inhibition of MMP-9 may be beneficial in treatment of colitis even if resulting in inhibition of MMP-2.


Journal of Clinical Investigation | 2010

Acute depletion of activated memory B cells involves the PD-1 pathway in rapidly progressing SIV-infected macaques

Kehmia Titanji; Vijayakumar Velu; Lakshmi Chennareddi; Matam Vijay-Kumar; Andrew T. Gewirtz; Gordon J. Freeman; Rama Rao Amara

Rapid progression to AIDS is a significant problem, especially in developing countries, where the majority of HIV-infected individuals reside. As rapid disease progression is also frequently observed in SIV-infected macaques, they represent a valuable tool to investigate the pathogenesis of this condition in humans. Here, we have shown that pathogenic SIV infection in rhesus macaques resulted in a rapid depletion (as early as week 2) of activated memory B (CD21-CD27+; mBAct) cells that was strongly associated with rapid disease progression. This depletion was progressive and sustained in rapid progressors, but less severe and transient in typical progressors. Because of the rapid and sustained depletion of mBAct cells, rapid progressors failed to develop SIV-specific Ab responses, showed a decline in non-SIV-specific Ab titers, and succumbed faster to intestinal bacterial infections. Depletion of mBAct cells was strongly associated with preferential depletion of mBAct cells expressing programmed death-1 (PD-1), and in vitro blockade of PD-1 improved their survival. Furthermore, in vivo PD-1 blockade in SIV-infected macaques enhanced Ab responses to non-SIV as well as SIV Ags. Our results identify depletion of mBAct cells as a very early predictor of rapid disease progression in pathogenic SIV infection and suggest an important role for the PD-1 pathway in depletion of mBAct cells and impaired humoral immune responses in SIV-infected macaques.


European Journal of Immunology | 2010

TLR5 or NLRC4 is necessary and sufficient for promotion of humoral immunity by flagellin

Matam Vijay-Kumar; Frederic A. Carvalho; Jesse D. Aitken; Nimita Fifadara; Andrew T. Gewirtz

The fact that some TLR‐based vaccine adjuvants maintain function in TLR‐deficient hosts highlights that their mechanism of function remains incompletely understood. Thus, we examined the ability of flagellin to induce cytokines and elicit/promote murine antibody responses upon deletion of the flagellin receptors TLR5 and/or NLRC4 (also referred to as IPAF) using a prime/boost regimen. In TLR5‐KO mice, flagellin failed to induce NF‐κB‐regulated cytokines such as keratinocyte‐derived chemokine (CXCL1) but induced WT levels of the inflammasome cytokine IL‐18 (IL‐1F4). Conversely, in NLRC4‐KO mice, flagellin induced keratinocyte‐derived chemokine, but not IL‐18, whereas TLR5/NLRC4‐DKO lacked induction of all cytokines measured. Flagellin/ovalbumin treatment resulted in high‐antibody titers to both flagellin and ovalbumin in WT, TLR5‐KO and DKO mice but did not elicit antibodies to either in TLR5/NLRC4‐DKO mice. Thus, flagellins ability to elicit/promote humoral immunity requires a germ‐line‐encoded receptor capable of recognizing this molecule. Such promotion of adaptive immunity can be effectively driven by either TLR5‐mediated activation of NF‐κB or NLRC4‐mediated activation of the inflammasome.


Annual Review of Physiology | 2012

Toll-Like Receptor–Gut Microbiota Interactions: Perturb at Your Own Risk!

Frederic A. Carvalho; Jesse D. Aitken; Matam Vijay-Kumar; Andrew T. Gewirtz

The well-being of the intestine and its host requires that this organ execute its complex function amid colonization by a large and diverse microbial community referred to as the gut microbiota. A myriad of interacting mechanisms of mucosal immunity permit the gut to corral the microbiota in such a way as to maximize the benefits and to minimize the danger of living in close proximity to this large microbial biomass. Toll-like receptors and Nod-like receptors, collectively referred to as pattern recognition receptors (PRRs), recognize a variety of microbial components and, hence, play a central role in governing the interface between host and microbiota. This review examines mechanisms by which PRR-microbiota interactions are regulated so as to allow activation of host defense when necessary while preventing excessive inflammation, which can have a myriad of negative consequences for the host. Analysis of published studies performed in human subjects and a variety of murine disease models reveals the central theme that PRRs play a key role in maintaining a healthful stable relationship between the intestine and its microbiota. In contrast, although select genetic ablations of PRR signaling may protect against some chronic diseases, the overriding theme of studies performed to date is that perturbations of PRR-microbiota interactions are more likely to promote disease states associated with inflammation.

Collaboration


Dive into the Matam Vijay-Kumar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beng San Yeoh

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Vishal Singh

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xia Xiao

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Piu Saha

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge