Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin A. Cash is active.

Publication


Featured researches published by Benjamin A. Cash.


Journal of Climate | 2012

High-Resolution Global Climate Simulations with the ECMWF Model in Project Athena: Experimental Design, Model Climate, and Seasonal Forecast Skill

Thomas Jung; Martin Miller; T. N. Palmer; Peter Towers; Nils P. Wedi; Deepthi Achuthavarier; J. D. Adams; Eric L. Altshuler; Benjamin A. Cash; James L. Kinter; Lawrence Marx; Cristiana Stan; Kevin I. Hodges

AbstractThe sensitivity to the horizontal resolution of the climate, anthropogenic climate change, and seasonal predictive skill of the ECMWF model has been studied as part of Project Athena—an international collaboration formed to test the hypothesis that substantial progress in simulating and predicting climate can be achieved if mesoscale and subsynoptic atmospheric phenomena are more realistically represented in climate models.In this study the experiments carried out with the ECMWF model (atmosphere only) are described in detail. Here, the focus is on the tropics and the Northern Hemisphere extratropics during boreal winter. The resolutions considered in Project Athena for the ECMWF model are T159 (126 km), T511 (39 km), T1279 (16 km), and T2047 (10 km). It was found that increasing horizontal resolution improves the tropical precipitation, the tropical atmospheric circulation, the frequency of occurrence of Euro-Atlantic blocking, and the representation of extratropical cyclones in large parts of th...


Journal of Climate | 2012

Tropical Cyclone Climatology in a 10-km Global Atmospheric GCM: Toward Weather-Resolving Climate Modeling

Julia V. Manganello; Kevin I. Hodges; James L. Kinter; Benjamin A. Cash; Lawrence Marx; Thomas Jung; Deepthi Achuthavarier; Jennifer M. Adams; Eric L. Altshuler; Bohua Huang; Emilia K. Jin; Cristiana Stan; Peter Towers; Nils P. Wedi

AbstractNorthern Hemisphere tropical cyclone (TC) activity is investigated in multiyear global climate simulations with the ECMWF Integrated Forecast System (IFS) at 10-km resolution forced by the observed records of sea surface temperature and sea ice. The results are compared to analogous simulations with the 16-, 39-, and 125-km versions of the model as well as observations.In the North Atlantic, mean TC frequency in the 10-km model is comparable to the observed frequency, whereas it is too low in the other versions. While spatial distributions of the genesis and track densities improve systematically with increasing resolution, the 10-km model displays qualitatively more realistic simulation of the track density in the western subtropical North Atlantic. In the North Pacific, the TC count tends to be too high in the west and too low in the east for all resolutions. These model errors appear to be associated with the errors in the large-scale environmental conditions that are fairly similar in this reg...


Bulletin of the American Meteorological Society | 2013

Revolutionizing Climate Modeling with Project Athena: A Multi-Institutional, International Collaboration

James L. Kinter; Benjamin A. Cash; Deepthi Achuthavarier; J. D. Adams; Eric L. Altshuler; P. Dirmeyer; B. Doty; B. Huang; E. K. Jin; Lawrence Marx; Julia V. Manganello; Cristiana Stan; T. Wakefield; T. N. Palmer; M. Hamrud; Thomas Jung; Martin Miller; Peter Towers; Nils P. Wedi; Masaki Satoh; Hiroyuki Tomita; Chihiro Kodama; Tomoe Nasuno; Kazuyoshi Oouchi; Yohei Yamada; Hiroshi Taniguchi; P. Andrews; T. Baer; M. Ezell; C. Halloy

The importance of using dedicated high-end computing resources to enable high spatial resolution in global climate models and advance knowledge of the climate system has been evaluated in an international collaboration called Project Athena. Inspired by the World Modeling Summit of 2008 and made possible by the availability of dedicated high-end computing resources provided by the National Science Foundation from October 2009 through March 2010, Project Athena demonstrated the sensitivity of climate simulations to spatial resolution and to the representation of subgrid-scale processes with horizontal resolutions up to 10 times higher than contemporary climate models. While many aspects of the mean climate were found to be reassuringly similar, beyond a suggested minimum resolution, the magnitudes and structure of regional effects can differ substantially. Project Athena served as a pilot project to demonstrate that an effective international collaboration can be formed to efficiently exploit dedicated sup...


Journal of Hydrometeorology | 2012

Evidence for Enhanced Land–Atmosphere Feedback in a Warming Climate

Paul A. Dirmeyer; Benjamin A. Cash; James L. Kinter; Cristiana Stan; Thomas Jung; Lawrence Marx; Peter Towers; Nils P. Wedi; Jennifer M. Adams; Eric L. Altshuler; Bohua Huang; Emilia K. Jin; Julia V. Manganello

AbstractGlobal simulations have been conducted with the European Centre for Medium-Range Weather Forecasts operational model run at T1279 resolution for multiple decades representing climate from the late twentieth and late twenty-first centuries. Changes in key components of the water cycle are examined, focusing on variations at short time scales. Metrics of coupling and feedbacks between soil moisture and surface fluxes and between surface fluxes and properties of the planetary boundary layer (PBL) are inspected. Features of precipitation and other water cycle trends from coupled climate model consensus projections are well simulated. Extreme 6-hourly rainfall totals become more intense over much of the globe, suggesting an increased risk for flash floods. Seasonal-scale droughts are projected to escalate over much of the subtropics and midlatitudes during summer, while tropical and winter droughts become less likely. These changes are accompanied by an increase in the responsiveness of surface evapotr...


Journal of Geophysical Research | 1999

Convective heat transfer over wintertime leads and polynyas

Edgar L. Andreas; Benjamin A. Cash

Leads and polynyas are areas of open water or thin ice surrounded by thicker ice. In winter they are ideal natural laboratories for studying convective heat transfer from the ocean. First, the relevant length scales are much larger than those possible in the laboratory. Second, the large water-air temperature difference provides a wide range of unstably stratified conditions. Third, the surrounding sea ice is a very stable platform on which to place turbulence instruments. Here we analyze three data sets obtained over Arctic leads and polynyas in winter. First, we compute the bulk aerodynamic transfer coefficient for sensible heat at neutral stability appropriate at a reference height of 10 m, CHN10. For fetches over the warm lead or polynya larger than ∼100 m, CHN10 has the value typically reported over the open ocean at lower latitudes, 1.00 × 10−3. At fetches much 0.15. Because we have data over a wide enough stability range to evaluate how C* depends on δ/L, in effect, we develop a new algorithm for computing sensible and latent heat transfer in fetch-limited, convective conditions. This algorithm could be especially useful for sensing the turbulent heat fluxes over leads and polynyas remotely because it depends only weakly on surface level wind speed, which is difficult to determine remotely over an ice-covered ocean.


Ecohealth | 2007

Cholera Seasonality in Madras (1901–1940): Dual Role for Rainfall in Endemic and Epidemic Regions

Diego Ruiz-Moreno; Mercedes Pascual; Menno J. Bouma; Andrew P. Dobson; Benjamin A. Cash

The seasonality of cholera and its spatial variability remain unexplained. Uncovering the role of environmental drivers in these seasonal patterns is critical to understand temporal variability at longer time scales, including trends and interannual variability. Rainfall has been proposed as a key driver of the seasonality of cholera. To address this hypothesis, we examine the association between rainfall and cholera in both time and space using the extensive historical records for the districts of Madras in former British India (1901–1940). We show the existence of two main spatial clusters that differ not just in the effect of rainfall but also in the seasonal pattern and frequency of periods with and without cholera mortality. The results support a model of cholera seasonality with two different routes of transmission: one is enhanced by increasing rainfall (in areas with abundant water), the other is buffered by increasing water. We discuss how the dual nature of the influence of rainfall creates different temporal patterns in regions where cholera is either “endemic” or “epidemic.”


Journal of Climate | 2001

Observed Nonmodal Growth of the Pacific–North American Teleconnection Pattern

Benjamin A. Cash; Sukyoung Lee

A linear-stochastic model is applied to the 10-day low-pass streamfunction field at 300, 500, and 850 mb for 40 winter seasons of Northern Hemisphere NCEP‐NCAR reanalysis data. The linear operator is derived from the observed multilevel covariances, allowing for statistical representation of nonlinear processes. While all empirical normal modes of the system are decaying, increase in the streamfunction variance is possible through nonmodal growth. When the evolution of the streamfunction field following the optimal perturbation is predicted, the Pacific‐North American teleconnection pattern (PNA) is found to be the most probable state of the atmosphere. Sixty-eight percent (70%) of positive (negative) PNA events are found to follow high projections onto the leading optimal, suggesting the PNA arises through constructive interference between the decaying modes and may be treated as a linear response to Gaussian white noise stochastic forcing. Implications for PNA timescale and onset mechanisms are also discussed.


Journal of Climate | 2008

Links between Tropical Pacific SST and Cholera Incidence in Bangladesh: Role of the Eastern and Central Tropical Pacific

Benjamin A. Cash; Xavier Rodó; James L. Kinter

Abstract Recent studies arising from both statistical analysis and dynamical disease models indicate that there is a link between incidence of cholera, a paradigmatic waterborne bacterial disease (WBD) endemic to Bangladesh, and the El Nino–Southern Oscillation (ENSO). However, a physical mechanism explaining this relationship has not yet been established. A regionally coupled, or “pacemaker,” configuration of the Center for Ocean–Land–Atmosphere Studies atmospheric general circulation model is used to investigate links between sea surface temperature in the central and eastern tropical Pacific and the regional climate of Bangladesh. It is found that enhanced precipitation tends to follow winter El Nino events in both the model and observations, providing a plausible physical mechanism by which ENSO could influence cholera in Bangladesh. The enhanced precipitation in the model arises from a modification of the summer monsoon circulation over India and Bangladesh. Westerly wind anomalies over land to the w...


Journal of Climate | 2014

Future Changes in the Western North Pacific Tropical Cyclone Activity Projected by a Multidecadal Simulation with a 16-km Global Atmospheric GCM

Julia V. Manganello; Kevin I. Hodges; Brandt Dirmeyer; James L. Kinter; Benjamin A. Cash; Lawrence Marx; Thomas Jung; Deepthi Achuthavarier; Jennifer M. Adams; Eric L. Altshuler; Bohua Huang; Emilia K. Jin; Peter Towers; Nils P. Wedi

AbstractHow tropical cyclone (TC) activity in the northwestern Pacific might change in a future climate is assessed using multidecadal Atmospheric Model Intercomparison Project (AMIP)-style and time-slice simulations with the ECMWF Integrated Forecast System (IFS) at 16-km and 125-km global resolution. Both models reproduce many aspects of the present-day TC climatology and variability well, although the 16-km IFS is far more skillful in simulating the full intensity distribution and genesis locations, including their changes in response to El Nino–Southern Oscillation. Both IFS models project a small change in TC frequency at the end of the twenty-first century related to distinct shifts in genesis locations. In the 16-km IFS, this shift is southward and is likely driven by the southeastward penetration of the monsoon trough/subtropical high circulation system and the southward shift in activity of the synoptic-scale tropical disturbances in response to the strengthening of deep convective activity over ...


Journal of Climate | 2010

Disentangling the Impact of ENSO and Indian Ocean Variability on the Regional Climate of Bangladesh: Implications for Cholera Risk

Benjamin A. Cash; Xavier Rodó; James L. Kinter; Yunus

Abstract Recent studies arising from both statistical analysis and dynamical disease models indicate that there is a link between the incidence of cholera, a paradigmatic waterborne bacterial illness endemic to Bangladesh, and the El Nino–Southern Oscillation (ENSO). Cholera incidence typically increases following boreal winter El Nino events for the period 1973–2001. Observational and model analyses find that Bangladesh summer rainfall is enhanced following winter El Nino events, providing a plausible physical link between El Nino and cholera incidence. However, rainfall and cholera incidence do not increase following every winter El Nino event. Substantial variations in Bangladesh precipitation also occur in simulations in which identical sea surface temperature (SST) anomalies are prescribed in the central and eastern tropical Pacific. Bangladesh summer precipitation is thus not uniquely determined by forcing from the tropical Pacific, with significant implications for predictions of cholera risk. Nonp...

Collaboration


Dive into the Benjamin A. Cash's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xavier Rodó

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Peter Towers

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar

Nils P. Wedi

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar

Bohua Huang

George Mason University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge