Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric L. Altshuler is active.

Publication


Featured researches published by Eric L. Altshuler.


Journal of Climate | 2012

High-Resolution Global Climate Simulations with the ECMWF Model in Project Athena: Experimental Design, Model Climate, and Seasonal Forecast Skill

Thomas Jung; Martin Miller; T. N. Palmer; Peter Towers; Nils P. Wedi; Deepthi Achuthavarier; J. D. Adams; Eric L. Altshuler; Benjamin A. Cash; James L. Kinter; Lawrence Marx; Cristiana Stan; Kevin I. Hodges

AbstractThe sensitivity to the horizontal resolution of the climate, anthropogenic climate change, and seasonal predictive skill of the ECMWF model has been studied as part of Project Athena—an international collaboration formed to test the hypothesis that substantial progress in simulating and predicting climate can be achieved if mesoscale and subsynoptic atmospheric phenomena are more realistically represented in climate models.In this study the experiments carried out with the ECMWF model (atmosphere only) are described in detail. Here, the focus is on the tropics and the Northern Hemisphere extratropics during boreal winter. The resolutions considered in Project Athena for the ECMWF model are T159 (126 km), T511 (39 km), T1279 (16 km), and T2047 (10 km). It was found that increasing horizontal resolution improves the tropical precipitation, the tropical atmospheric circulation, the frequency of occurrence of Euro-Atlantic blocking, and the representation of extratropical cyclones in large parts of th...


Journal of Climate | 2012

Tropical Cyclone Climatology in a 10-km Global Atmospheric GCM: Toward Weather-Resolving Climate Modeling

Julia V. Manganello; Kevin I. Hodges; James L. Kinter; Benjamin A. Cash; Lawrence Marx; Thomas Jung; Deepthi Achuthavarier; Jennifer M. Adams; Eric L. Altshuler; Bohua Huang; Emilia K. Jin; Cristiana Stan; Peter Towers; Nils P. Wedi

AbstractNorthern Hemisphere tropical cyclone (TC) activity is investigated in multiyear global climate simulations with the ECMWF Integrated Forecast System (IFS) at 10-km resolution forced by the observed records of sea surface temperature and sea ice. The results are compared to analogous simulations with the 16-, 39-, and 125-km versions of the model as well as observations.In the North Atlantic, mean TC frequency in the 10-km model is comparable to the observed frequency, whereas it is too low in the other versions. While spatial distributions of the genesis and track densities improve systematically with increasing resolution, the 10-km model displays qualitatively more realistic simulation of the track density in the western subtropical North Atlantic. In the North Pacific, the TC count tends to be too high in the west and too low in the east for all resolutions. These model errors appear to be associated with the errors in the large-scale environmental conditions that are fairly similar in this reg...


Bulletin of the American Meteorological Society | 2013

Revolutionizing Climate Modeling with Project Athena: A Multi-Institutional, International Collaboration

James L. Kinter; Benjamin A. Cash; Deepthi Achuthavarier; J. D. Adams; Eric L. Altshuler; P. Dirmeyer; B. Doty; B. Huang; E. K. Jin; Lawrence Marx; Julia V. Manganello; Cristiana Stan; T. Wakefield; T. N. Palmer; M. Hamrud; Thomas Jung; Martin Miller; Peter Towers; Nils P. Wedi; Masaki Satoh; Hiroyuki Tomita; Chihiro Kodama; Tomoe Nasuno; Kazuyoshi Oouchi; Yohei Yamada; Hiroshi Taniguchi; P. Andrews; T. Baer; M. Ezell; C. Halloy

The importance of using dedicated high-end computing resources to enable high spatial resolution in global climate models and advance knowledge of the climate system has been evaluated in an international collaboration called Project Athena. Inspired by the World Modeling Summit of 2008 and made possible by the availability of dedicated high-end computing resources provided by the National Science Foundation from October 2009 through March 2010, Project Athena demonstrated the sensitivity of climate simulations to spatial resolution and to the representation of subgrid-scale processes with horizontal resolutions up to 10 times higher than contemporary climate models. While many aspects of the mean climate were found to be reassuringly similar, beyond a suggested minimum resolution, the magnitudes and structure of regional effects can differ substantially. Project Athena served as a pilot project to demonstrate that an effective international collaboration can be formed to efficiently exploit dedicated sup...


Journal of Hydrometeorology | 2012

Evidence for Enhanced Land–Atmosphere Feedback in a Warming Climate

Paul A. Dirmeyer; Benjamin A. Cash; James L. Kinter; Cristiana Stan; Thomas Jung; Lawrence Marx; Peter Towers; Nils P. Wedi; Jennifer M. Adams; Eric L. Altshuler; Bohua Huang; Emilia K. Jin; Julia V. Manganello

AbstractGlobal simulations have been conducted with the European Centre for Medium-Range Weather Forecasts operational model run at T1279 resolution for multiple decades representing climate from the late twentieth and late twenty-first centuries. Changes in key components of the water cycle are examined, focusing on variations at short time scales. Metrics of coupling and feedbacks between soil moisture and surface fluxes and between surface fluxes and properties of the planetary boundary layer (PBL) are inspected. Features of precipitation and other water cycle trends from coupled climate model consensus projections are well simulated. Extreme 6-hourly rainfall totals become more intense over much of the globe, suggesting an increased risk for flash floods. Seasonal-scale droughts are projected to escalate over much of the subtropics and midlatitudes during summer, while tropical and winter droughts become less likely. These changes are accompanied by an increase in the responsiveness of surface evapotr...


Journal of Climate | 2014

Future Changes in the Western North Pacific Tropical Cyclone Activity Projected by a Multidecadal Simulation with a 16-km Global Atmospheric GCM

Julia V. Manganello; Kevin I. Hodges; Brandt Dirmeyer; James L. Kinter; Benjamin A. Cash; Lawrence Marx; Thomas Jung; Deepthi Achuthavarier; Jennifer M. Adams; Eric L. Altshuler; Bohua Huang; Emilia K. Jin; Peter Towers; Nils P. Wedi

AbstractHow tropical cyclone (TC) activity in the northwestern Pacific might change in a future climate is assessed using multidecadal Atmospheric Model Intercomparison Project (AMIP)-style and time-slice simulations with the ECMWF Integrated Forecast System (IFS) at 16-km and 125-km global resolution. Both models reproduce many aspects of the present-day TC climatology and variability well, although the 16-km IFS is far more skillful in simulating the full intensity distribution and genesis locations, including their changes in response to El Nino–Southern Oscillation. Both IFS models project a small change in TC frequency at the end of the twenty-first century related to distinct shifts in genesis locations. In the 16-km IFS, this shift is southward and is likely driven by the southeastward penetration of the monsoon trough/subtropical high circulation system and the southward shift in activity of the synoptic-scale tropical disturbances in response to the strengthening of deep convective activity over ...


Journal of Climate | 2015

ENSO Prediction in Project Minerva: Sensitivity to Atmospheric Horizontal Resolution and Ensemble Size

Jieshun Zhu; Bohua Huang; Ben Cash; James L. Kinter; Julia V. Manganello; Rondrotiana Barimalala; Eric L. Altshuler; F. Vitart; Franco Molteni; Peter Towers

AbstractThis study examines El Nino–Southern Oscillation (ENSO) prediction in Project Minerva, a recent collaboration between the Center for Ocean–Land–Atmosphere Studies (COLA) and the European Centre for Medium-Range Weather Forecasts (ECMWF). The focus is primarily on the impact of the atmospheric horizontal resolution on ENSO prediction, but the effect from different ensemble sizes is also discussed. Particularly, three sets of 7-month hindcasts performed with ECMWF prediction system are compared, starting from 1 May (1 November) during 1982–2011 (1982–2010): spectral T319 atmospheric resolution with 15 ensembles, spectral T639 with 15 ensembles, and spectral T319 with 51 ensembles. The analysis herein shows that simply increasing either ensemble size from 15 to 51 or atmospheric horizontal resolution from T319 to T639 does not necessarily lead to major improvement in the ENSO prediction skill with current climate models. For deterministic prediction skill metrics, the three sets of predictions do not...


Journal of Climate | 2013

Model Estimates of Land-Driven Predictability in a Changing Climate from CCSM4

Paul A. Dirmeyer; Sanjiv Kumar; Michael J. Fennessy; Eric L. Altshuler; Timothy DelSole; Zhichang Guo; Benjamin A. Cash; David M. Straus

AbstractThe climate system model of the National Center for Atmospheric Research is used to examine the predictability arising from the land surface initialization of seasonal climate ensemble forecasts in current, preindustrial, and projected future settings. Predictability is defined in terms of the models ability to predict its own interannual variability. Predictability from the land surface in this model is relatively weak compared to estimates from other climate models but has much of the same spatial and temporal structure found in previous studies. Several factors appear to contribute to the weakness, including a low correlation between surface fluxes and subsurface soil moisture, less soil moisture memory (lagged autocorrelation) than other models or observations, and relative insensitivity of the atmospheric boundary layer to surface flux variations. Furthermore, subseasonal cyclical behavior in plant phenology for tropical grasses introduces spurious unrealistic predictability at low latitudes...


Journal of Climate | 2014

Changes in Seasonal Predictability due to Global Warming

Timothy DelSole; Xiaoqin Yan; Paul A. Dirmeyer; Mike Fennessy; Eric L. Altshuler

AbstractThe change in predictability of monthly mean temperature in a future climate is quantified based on the Community Climate System Model, version 4. According to this model, the North Atlantic overtakes the El Nino–Southern Oscillation (ENSO) as the dominant area of seasonal predictability by 2095. This change arises partly because ENSO becomes less variable and partly because the ENSO teleconnection pattern expands into the Atlantic. Over land, the largest change in temperature predictability occurs in the tropics and is predominantly due to a decrease in ENSO variability. The southern peninsula of Africa and northeast South America are predicted to experience significant drying in a future climate, which decreases the effective heat capacity and memory, and hence increases variance independently of ENSO changes. Extratropical land areas experience enhanced precipitation in a future climate, which decreases temperature variance by the same mechanism. Finally, the model predicts that surface tempera...


Journal of Climate | 2015

Regional Structure of the Indian Summer Monsoon in Observations, Reanalysis, and Simulation

Benjamin A. Cash; James L. Kinter; Jennifer M. Adams; Eric L. Altshuler; Bohua Huang; Emilia K. Jin; Julia V. Manganello; L. Marx; Thomas Jung

AbstractRegional variations in seasonal mean Indian summer monsoon rainfall and circulation for the period 1979–2009 are investigated using multiple data products. The focus is on four separate regions: the Western Ghats (WG), the Ganges basin (GB), the Bay of Bengal (BB), and Bangladesh–northeastern India (BD). Data reliability varies strongly by region, with particularly low correlations between different products for the BB and BD regions. Correlations between regions are generally not statistically significant, indicating rainfall varies independently in these four regions. The diagnosed associations between rainfall, circulation, and sea surface temperatures can be sensitive to the choice of rainfall product, and multiple precipitation products may need to be analyzed in this region to ensure that the results are robust.Enhanced precipitation in the BD region is associated with anomalous anticyclonic circulation at 850 mb and westerly anomalies along the foothills of the Tibetan Plateau, while precip...


Journal of Climate | 2016

Seasonal Forecasts of Tropical Cyclone Activity in a High-Atmospheric-Resolution Coupled Prediction System*

Julia V. Manganello; Kevin I. Hodges; Benjamin A. Cash; James L. Kinter; Eric L. Altshuler; Michael J. Fennessy; F. Vitart; Franco Molteni; Peter Towers

AbstractSeasonal forecast skill of the basinwide and regional tropical cyclone (TC) activity in an experimental coupled prediction system based on the ECMWF System 4 is assessed. As part of a collaboration between the Center for Ocean–Land–Atmosphere Studies (COLA) and the ECMWF called Project Minerva, the system is integrated at the atmospheric horizontal spectral resolutions of T319, T639, and T1279. Seven-month hindcasts starting from 1 May for the years 1980–2011 are produced at all three resolutions with at least 15 ensemble members. The Minerva system demonstrates statistically significant skill for retrospective forecasts of TC frequency and accumulated cyclone energy (ACE) in the North Atlantic (NA), eastern North Pacific (EP), and western North Pacific. While the highest scores overall are achieved in the North Pacific, the skill in the NA appears to be limited by an overly strong influence of the tropical Pacific variability. Higher model resolution improves skill scores for the ACE and, to a le...

Collaboration


Dive into the Eric L. Altshuler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Towers

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar

Bohua Huang

George Mason University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nils P. Wedi

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge