Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin A. Musa Bandowe is active.

Publication


Featured researches published by Benjamin A. Musa Bandowe.


Environmental Pollution | 2010

Polycyclic aromatic hydrocarbons (PAHs) and their oxygen-containing derivatives (OPAHs) in soils from the Angren industrial area, Uzbekistan.

Benjamin A. Musa Bandowe; Nosir Shukurov; Michael Kersten; Wolfgang Wilcke

We measured the concentrations and depth distribution (0-10, 10-20 cm) of 31 PAHs and 12 OPAHs in soils at eleven equidistant sampling points along a 20-km transect in the Angren industrial region (coal mine, power plant, rubber factory, gold mine), Uzbekistan to gain an insight into their concentrations, sources, and fate. Concentrations of all compounds were mostly much higher in the 0-10 cm than in the 10-20 cm layer except in disturbed soil close to the coal mine. Proximity to one of the industrial emitters was the main determinant of PAH and OPAH concentrations. The Sigma31PAHs concentrations correlated positively with the Sigma7 carbonyl-OPAH (r=0.98, p<0.01), Sigma5 hydroxyl-OPAH (r=0.72, p<0.05), and with industrially emitted trace metals in the topsoil, identifying industrial emissions as their common source. Concentrations of several OPAHs were higher than their parent PAHs, but their vertical distribution in soil suggested only little higher mobility of OPAHs than their corresponding parent PAHs.


Environment International | 2014

Polycyclic aromatic compounds (PAHs and oxygenated PAHs) and trace metals in fish species from Ghana (West Africa): Bioaccumulation and health risk assessment

Benjamin A. Musa Bandowe; Moritz Bigalke; Linda Boamah; Elvis Nyarko; Firibu K. Saalia; Wolfgang Wilcke

We report the concentrations of 28 PAHs, 15 oxygenated PAHs (OPAHs) and 11 trace metals/metalloids (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn) in muscle and gut+gill tissues of demersal fishes (Drapane africana, Cynoglossus senegalensis and Pomadasys peroteti) from three locations along the coast of the Gulf of Guinea (Ghana). The concentrations of ∑28PAHs in muscle tissues averaged 192ngg(-1) dw (range: 71-481ngg(-1) dw) and were not statistically different between locations. The concentrations of ∑28 PAHs were higher in guts+gills than in muscles. The PAH composition pattern was dominated by low molecular weight compounds (naphthalene, alkyl-naphthalenes and phenanthrene). All fish tissues had benzo[a]pyrene concentrations lower than the EU limit for food safety. Excess cancer risk from consumption of some fish was higher than the guideline value of 1×10(-6). The concentrations of ∑15 OPAHs in fish muscles averaged 422ngg(-1) dw (range: 28-1715ngg(-1)dw). The ∑15 OPAHs/∑16 US-EPA PAHs concentration ratio was >1 in 68% of the fish muscles and 100% of guts+gills. The log-transformed concentrations of PAHs and OPAHs in muscles, guts+gills were significantly (p<0.05) correlated with their octanol-water partitioning coefficients, strongly suggesting that equilibrium partitioning from water/sediment into fish tissue was the main mechanism of bioaccumulation. The trace metal concentrations in the fish tissues were in the medium range when compared to fish from other parts of the world. The concentrations of some trace metals (Cd, Cu, Fe, Mn, Zn) were higher in guts+gills than in muscle tissues. The target hazard quotients for metals were<1 and did not indicate a danger to the local population. We conclude that the health risk arising from the consumption of the studied fish (due to their PAHs and trace metals content) is minimal.


Environmental Pollution | 2011

Oxygen-containing polycyclic aromatic hydrocarbons (OPAHs) in urban soils of Bratislava, Slovakia: Patterns, relation to PAHs and vertical distribution

Benjamin A. Musa Bandowe; Jaroslava Sobocka; Wolfgang Wilcke

We determined concentrations, sources, and vertical distribution of OPAHs and PAHs in soils of Bratislava. The ∑14 OPAHs concentrations in surface soil horizons ranged 88-2692 ng g(-1) and those of ∑34 PAHs 842-244,870 ng g(-1). The concentrations of the ∑9 carbonyl-OPAHs (r=0.92, p=0.0001) and the ∑5 hydroxyl-OPAHs (r=0.73, p=0.01) correlated significantly with ∑34 PAHs concentrations indicating the close association of OPAHs with parent-PAHs. OPAHs were quantitatively dominated by 9-fluorenone, 9,10-anthraquinone, 1-indanone and benzo[a]anthracene-7,12-dione. At several sites, individual carbonyl-OPAHs had higher concentrations than parent PAHs. The concentration ratios of several OPAHs to their parent-PAHs and contribution of the more soluble OPAHs (1-indanone and 9-fluorenone) to ∑14 OPAHs concentrations increased with soil depth suggesting that OPAHs were faster vertically transported in the study soils by leaching than PAHs which was supported by the correlation of subsoil:surface soil ratios of OPAH concentrations at several sites with K(OW).


Environmental Science & Technology | 2015

Elemental Carbon and Polycyclic Aromatic Compounds in a 150-Year Sediment Core from Lake Qinghai, Tibetan Plateau, China: Influence of Regional and Local Sources and Transport Pathways

Yongming Han; C. Wei; Benjamin A. Musa Bandowe; Wolfgang Wilcke; Junji Cao; B. Q. Xu; S. P. Gao; X. X. Tie; G. H. Li; Zhangdong Jin; Zhisheng An

Elemental carbon (EC) and polycyclic aromatic compounds (PACs) are potential proxies for the reconstruction of change in human activities and the origin of air masses in historic times. In this study, the historic deposition of char and soot (the two subtypes of EC) and PACs in a 150-year sediment core from different topographic subbasins of Lake Qinghai on the Qinghai Tibetan Plateau (QTP) were reconstructed. The objective was to explore how the variations in the concentrations of EC and PACs, in the ratios of char to soot and of oxygenated polycyclic aromatic hydrocarbons (OPAHs) to parent PAHs, and in the composition of the PAC mixtures reflect historical changes in climate and human activity and the origin of air masses arriving at the QTP. The deposition fluxes of soot in the different subbasins were similar, averaging 0.18 (range of 0.15-0.25) and 0.16 (0.13-0.23) g m(-2) year(-1), respectively, but they varied for char (averaging 0.11 and 0.22 g m(-2) year(-1), respectively), suggesting ubiquitous atmospheric deposition of soot and local river inputs of char. The different vertical distributions of the char/soot ratios in the different subbasins can be interpreted in terms of the different transport mechanisms of char and soot. An abrupt increase in soot concentrations since 1980 coincides with results from the QTP ice cores that were interpreted to be indicative of soot transport from South Asia. Similar concentration patterns of PAHs with soot and 9,10-anthraquinone/anthracene (9,10-AQ/ANT) ratios all >2.0 suggest regional PAC sources. Increasing PAH/soot ratios and decreasing 9,10-AQ/ANT ratios since the beginning of the 1970s indicate increasing local emissions. The historical trends of these diagnostic ratios indicate an increase in the fossil-fuel contribution since the beginning of the 1970s. The increase of perylene concentrations with increasing core depth and the ratio of perylene to its penta-aromatic isomers indicate that perylene originates mainly from in situ biogenic diagenesis. We demonstrate that the concentrations of EC, char, soot, and PACs in sediments can be used to reconstruct local, regional, and remote sources and transport pathways of pollutants to the QTP.


Science of The Total Environment | 2017

Polycyclic aromatic hydrocarbons and their derivatives (nitro-PAHs, oxygenated PAHs, and azaarenes) in PM2.5 from Southern European cities

Célia Alves; Ana Vicente; Danilo Custódio; Mário Cerqueira; Teresa Nunes; Casimiro Pio; F. Lucarelli; G. Calzolai; S. Nava; Evangelia Diapouli; Konstantinos Eleftheriadis; Xavier Querol; Benjamin A. Musa Bandowe

Atmospheric particulate matter (PM2.5) samples were collected over two one month periods during winter and summer in three Southern European cities (Oporto - traffic site, Florence - urban background, Athens - suburban). Concentrations of 27 polycyclic aromatic hydrocarbons (PAHs), 15 nitro-PAHs (NPAHs), 15 oxygenated-PAHs (OPAHs) and 4 azaarenes (AZAs) were determined. On average, the winter-summer concentrations of ΣPAHs were 16.3-5.60, 7.75-3.02 and 3.44-0.658ngm-3 in Oporto, Florence and Athens, respectively. The corresponding concentrations of ΣNPAHs were 15.8-9.15, 10.9-3.36 and 15.9-2.73ngm-3, whilst ΣOPAHs varied in the ranges 41.8-19.0, 11.3-3.10 and 12.6-0.704ngm-3. Concentrations of ΣAZAs were always below 0.5ngm-3. Irrespective of the city, the dominant PAHs were benzo[b+j+k]fluoranthene, retene, benzo[ghi]perylene and indeno[1,2,3-cd]pyrene. The most abundant OPAH in all cities was 1,8-naphthalic anhydride, whereas 5-nitroacenaphthene was the prevailing NPAH. The ΣOPAHs/ΣPAHs and ΣNPAHs/ΣPAHs were higher in summer than in winter, suggesting increasing formation of derivatives by photochemical degradation of PAHs. Molecular diagnostic ratios suggested that, after traffic, biomass burning was the dominant emission source. Apart from being influenced by seasonal sources, the marked differences between winter and summer may indicate that these diagnostic ratios are particularly sensitive to photodegradation, and thus should be applied and interpreted cautiously. The lifetime excess cancer risk from inhalation was, in part, attributable to PAH derivatives, acclaiming the need to include these compounds in regular monitoring programmes. On average, 206, 88 and 26 cancer cases per million people were estimated, by the World Health Organisation method, for the traffic-impacted, urban background and suburban atmospheres of Oporto, Florence and Athens, respectively.


Science of The Total Environment | 2017

Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment – A review

Benjamin A. Musa Bandowe; Hannah Meusel

Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are derivatives of PAHs with at least one nitro-functional group (-NO2) on the aromatic ring. The toxic effects of several nitro-PAHs are more pronounced than those of PAHs. Some nitro-PAHs are classified as possible or probable human carcinogens by the International Agency for Research on Cancer. Nitro-PAHs are released into the environment from combustion of carbonaceous materials (e.g. fossil fuels, biomass, waste) and post-emission transformation of PAHs. Most studies on nitro-PAHs are about air (gas-phase and particulate matter), therefore less is known about the occurrence, concentrations, transport and fate of nitro-PAHs in soils, aquatic environment and biota. Studies on partition and exchange of nitro-PAHs between adjacent environmental compartments are also sparse. The concentrations of nitro-PAHs cannot easily be predicted from the intensity of anthropogenic activity or easily related to those of PAHs. This is because anthropogenic source strengths of nitro-PAHs are different from those of PAHs, and also nitro-PAHs have additional sources (formed by photochemical conversion of PAHs). The fate and transport of nitro-PAHs could be considerably different from their related PAHs because of their higher molecular weights and considerably different sorption mechanisms. Hence, specific knowledge on nitro-PAHs is required. Regulations on nitro-PAHs are also lacking. We present an extensive review of published literature on the sources, formation, physico-chemical properties, methods of determination, occurrence, concentration, transport, fate, (eco)toxicological and adverse health effects of nitro-PAHs. We also make suggestions and recommendations about data needs, and future research directions on nitro-PAHs. It is expected that this review will stimulate scientific discussion and provide the basis for further research and regulations on nitro-PAHs.


Chemosphere | 2014

Oxygenated polycyclic aromatic hydrocarbons and azaarenes in urban soils: A comparison of a tropical city (Bangkok) with two temperate cities (Bratislava and Gothenburg)

Benjamin A. Musa Bandowe; María Gómez Lueso; Wolfgang Wilcke

Environmental conditions in the tropics favor the formation of polar polycyclic aromatic compound (polar PACs, such as oxygenated PAHs [OPAHs] and azaarenes [AZAs]), but little is known about these hazardous compounds in tropical soils. The objectives of this work were to determine (i) the level of contamination of soils (0-5 and 5-10 cm layers) from the tropical metropolis of Bangkok (Thailand) with OPAHs and AZAs and (ii) the influence of urban emission sources and soil properties on the distribution of PACs. We hypothesized that the higher solar insolation and microbial activity in the tropics than in the temperate zone will lead to enhanced secondary formation of OPAHs. Hence, OPAH to related parent-PAH ratios will be higher in the tropical soils of Bangkok than in temperate soils of Bratislava and Gothenburg. The concentrations of ∑15OPAHs (range: 12-269 ng g(-1)) and ∑4AZAs (0.1-31 ng g(-1)) measured in soils of Bangkok were lower than those in several cities of the industrialized temperate zone. The ∑15OPAHs (r=0.86, p<0.01) and ∑4AZAs (r=0.67, p<0.01) correlated significantly with those of ∑20PAHs highlighting similar sources and related fate. The octanol-water partition coefficient did not explain the transport to the subsoil, indicating soil mixing as the reason for the polar PAC load of the lower soil layer. Data on PAC concentrations in soils of Bratislava and Gothenburg were taken from published literature. The individual OPAH to parent-PAH ratios in soils of Bangkok were mostly higher than those of Bratislava and Gothenburg (e.g. 9-fluorenone/fluorene concentration ratio was 12.2 ± 6.7, 5.6 ± 2.4, and 0.7 ± 02 in Bangkok, Bratislava and Gothenburg soils, respectively) supporting the view that tropical environmental conditions and higher microbial activity likely lead to higher OPAH to parent-PAH ratios in tropical than in temperate soils.


Environmental Pollution | 2010

Method optimization to measure polybrominated diphenyl ether (PBDE) concentrations in soils of Bratislava, Slovakia

Ute R. Thorenz; Benjamin A. Musa Bandowe; Jaroslava Sobocka; Wolfgang Wilcke

We modified an analytical method to determine polybrominated diphenyl ethers (PBDEs) in urban soils of Bratislava (Slovakia). Gel permeation chromatography (GPC) introduced as a clean-up step for soil extracts substantially reduced matrix enhancements when PBDEs were measured with gas chromatography-negative chemical ionization-mass spectrometry (GC-NCI-MS). The resulting method proved to be accurate, precise, and showed low detection limits. The sum of 15 PBDE concentrations in surface horizons of Bratislava soils ranged from 87 to 627 pg g(-1). PBDE concentrations were mostly higher in surface than deeper horizons probably because of atmospheric deposition and lack of substantial vertical transport. Lower brominated PBDEs undergo more soil-atmosphere exchanges or are more scavenged and transferred with litter fall to the soil organic matter than higher brominated ones as suggested by the correlation between lower brominated PBDEs and soil organic C (C(org)) concentrations.


Science of The Total Environment | 2016

Occurrence, distribution and health risk from polycyclic aromatic compounds (PAHs, oxygenated-PAHs and azaarenes) in street dust from a major West African Metropolis.

Benjamin A. Musa Bandowe; Marian Asantewah Nkansah

Scientific evidence suggests that the burden of disease on urban residents of sub-Saharan African Countries is increasing, partly as a result of exposure to elevated concentrations of toxic environmental chemicals. However, characterization of the levels, composition pattern and sources of polycyclic aromatic compounds (PACs) in environmental samples from African cities is still lacking. This study measured the PAHs, oxygenated-PAHs (OPAHs) and azaarene (AZAs) content of street dusts collected from Kumasi, Ghana (a major metropolis located in the tropical forest zone of West Africa). The ∑Alkyl+parent-PAHs, ∑OPAHs and ∑AZAs concentration in street dust averaged 2570 ng g(-1) (range: 181-7600 ng g(-1)), 833 ng g(-1) (57-4200 ng g(-1)) and 73 ng g(-1) (3.3-240 ng g(-1)), respectively. The concentrations of ∑Alkyl+parent-PAHs were strongly correlated (n=25) with ∑OPAHs (r=0.96, p<0.01) and ∑AZAs (r=0.94, p<0.01). The ∑OPAHs concentrations were also strongly correlated with ∑AZAs (r=0.91, p<0.01). Concentrations of individual PAHs in these street dusts were enriched at between 12 and 836 compared to their average concentrations in background soils from same city, demonstrating the high influence of traffic emissions. Several individual OPAHs and AZAs had higher concentrations than their related and often monitored parent-PAHs. The estimated incremental lifetime cancer risks due to the parent-PAHs in street dusts was >10(-6) indicating high risk of contracting cancer from exposure to street dust from Kumasi. The contribution of OPAHs, AZAs, and alkyl-PAHs in street dust to cancer risk could not be quantified because of lack of toxicity equivalency factors for these compounds; however this could be significant because of their high concentration and known higher toxicity of some polar PACs and alkyl-PAHs than their related parent-PAHs.


Science of The Total Environment | 2014

Polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives (oxygenated PAHs, azaarenes) in soils along a climosequence in Argentina.

Wolfgang Wilcke; Benjamin A. Musa Bandowe; María Gómez Lueso; Marc Ruppenthal; Héctor del Valle; Yvonne Oelmann

We evaluated the effects of soil properties and climate on concentrations of parent and oxygenated polycyclic aromatic compounds (PAHs and OPAHs) and azaarenes (AZAs) in topsoil and subsoil at 20 sites along a 2100-km north (N)-south (S) transect in Argentina. The concentrations of Σ29PAHs, Σ15OPAHs and Σ4AZAs ranged 2.4-38 ng g(-1), 0.05-124 ng g(-1) and not detected to 0.97 ng g(-1), respectively. With decreasing anthropogenic influence from N to S, low molecular weight PAHs increasingly dominated. The octanol-water partitioning coefficients correlated significantly with the subsoil to topsoil concentration ratios of most compounds suggesting leaching as the main transport process. Organic C concentrations correlated significantly with those of many compounds typical for atmosphere-soil partitioning. Lighter OPAHs were mainly detected in the S suggesting biological sources and heavier OPAHs in the N suggesting a closer association with parent-PAHs. Decreasing alkyl-naphthalene/naphthalene and 9,10-anthraquinone (9,10-ANQ)/anthracene ratios from N to S indicated that 9,10-ANQ might have originated from low-temperature combustion.

Collaboration


Dive into the Benjamin A. Musa Bandowe's collaboration.

Top Co-Authors

Avatar

Wolfgang Wilcke

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Junji Cao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Kin Fai Ho

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Wei

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yongming Han

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rujin Huang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge