Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thorsten Hoffmann is active.

Publication


Featured researches published by Thorsten Hoffmann.


Journal of Atmospheric Chemistry | 1997

Formation of Organic Aerosols from the Oxidation of Biogenic Hydrocarbons

Thorsten Hoffmann; Jay R. Odum; Frank M. Bowman; Don R. Collins; Dieter Klockow; John H. Seinfeld

AbstractMeasurements of aerosol formation during thephotooxidation of α-pinene, β-pinene,d-3-carene, d-limonene, ocimene, linalool, terpinene-4-ol, andtrans-caryophyllene were conducted in anoutdoor smog chamber. Daylight experiments in thepresence of


Journal of Geophysical Research | 2003

New particle formation from photooxidation of diiodomethane (CH2I2)

Jose L. Jimenez; Roya Bahreini; David R. Cocker; Hong Zhuang; Varuntida Varutbangkul; John H. Seinfeld; Colin D. O'Dowd; Thorsten Hoffmann


Journal of Geophysical Research | 2002

A dedicated study of new particle formation and fate in the coastal environment (PARFORCE): overview of objectives and achievements

Colin D. O'Dowd; Kaarle Hämeri; J. M. Mäkelä; Liisa Pirjola; Markku Kulmala; S. Gerard Jennings; H. Berresheim; Hans-Christen Hansson; Gerrit de Leeuw; G.J. Kunz; Andrew G. Allen; C. Nicholas Hewitt; Andrea V. Jackson; Y. Viisanen; Thorsten Hoffmann

{\text{NO}}_x


Journal of Geophysical Research | 1998

Molecular composition of organic aerosols formed in the α‐pinene/O3 reaction: Implications for new particle formation processes

Thorsten Hoffmann; Rolf Bandur; Ulrich Marggraf; Michael Linscheid


Proceedings of the National Academy of Sciences of the United States of America | 2012

Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions

Neil M. Donahue; Kaytlin M. Henry; Thomas F. Mentel; Astrid Kiendler-Scharr; C. Spindler; Birger Bohn; T. Brauers; Hans P. Dorn; Hendrik Fuchs; R. Tillmann; Andreas Wahner; Harald Saathoff; K.-H. Naumann; O. Möhler; Thomas Leisner; Lars Peter Müller; Marc-Christopher Reinnig; Thorsten Hoffmann; Kent Salo; Mattias Hallquist; Mia Frosch; Merete Bilde; Torsten Tritscher; Peter Barmet; Arnaud P. Praplan; P. F. DeCarlo; Josef Dommen; André S. H. Prévôt; Urs Baltensperger

and dark experiments withelevated ozone concentrations were performed. Theevolution of the aerosol was simulated by theapplication of a gas/particle absorption model inconnection with a chemical reaction mechanism. Thefractional aerosol yield is shown to be a function ofthe organic aerosol mass concentration andtemperature. Ozone and, for selected hydrocarbons, theNO3 reaction of the compounds were found torepresent efficient routes to the formation ofcondensable products. For initial hydrocarbon mixingratios of about 100 ppb, the fractional aerosol yieldsfrom daylight runs have been estimated to be ∼5%for open-chain hydrocarbons, such as ocimene andlinalool, 5–25% for monounsaturated cyclicmonoterpenes, such as α-pinene, d-3-carene, orterpinene-4-ol, and ∼40% for a cyclic monoterpenewith two double bonds like d-limonene. For the onlysesquiterpene investigated, trans-caryophyllene, afractional aerosol yield of close to 100% wasobserved. The majority of the compounds studied showedan even higher aerosol yield during dark experimentsin the presence of ozone.


Science | 2013

HONO Emissions from Soil Bacteria as a Major Source of Atmospheric Reactive Nitrogen

Robert Oswald; Thomas Behrendt; M. Ermel; Dianming Wu; Hang Su; Yafang Cheng; Claudia Breuninger; Alexander Moravek; E. Mougin; C. Delon; Benjamin Loubet; Andreas Pommerening-Röser; Matthias Sörgel; Ulrich Pöschl; Thorsten Hoffmann; Meinrat O. Andreae; F. X. Meixner; Ivonne Trebs

Photolysis of CH_2I_2 in the presence of O_3 has been proposed as a mechanism leading to intense new particle formation in coastal areas. We report here a comprehensive laboratory chamber study of this system. Rapid homogeneous nucleation was observed over three orders of magnitude in CH_2I_2 mixing ratio, down to a level of 15 ppt (∼4 × 10^8 molec. cm^(−3)) comparable to the directly measured total gas-phase iodine species concentrations in coastal areas. After the nucleation burst, the observed aerosol dynamics in the chamber was dominated by condensation of additional vapors onto existing particles and particle coagulation. Particles formed under dry conditions are fractal agglomerates with mass fractal dimension, D_f ∼ 1.8–2.5. Higher relative humidity (65%) does not change the nucleation or growth behavior from that under dry conditions, but results in more compact and dense particles (D_f ∼ 2.7). On the basis of the known gas-phase chemistry, OIO is the most likely gas-phase species to produce the observed nucleation and aerosol growth; however, the current understanding of this chemistry is very likely incomplete. Chemical analysis of the aerosol using an Aerodyne Aerosol Mass Spectrometer reveals that the particles are composed mainly of iodine oxides but also contain water and/or iodine oxyacids. The system studied here can produce nucleation events as intense as those observed in coastal areas. On the basis of comparison between the particle composition, hygroscopicity, and nucleation and growth rates observed in coastal nucleation and in the experiments reported here, it is likely that photooxidation of CH_2I_2, probably aided by other organic iodine compounds, is the mechanism leading to the observed new particle formation in the west coast of Ireland.


Chemosphere | 2008

Polar organic marker compounds in PM2.5 aerosol from a mixed forest site in western Germany

Ivan Kourtchev; Jörg Warnke; Willy Maenhaut; Thorsten Hoffmann; M. Claeys

A dedicated study into the formation of new particles, New Particle Formation and Fate in the Coastal Environment (PARFORCE), was conducted over a period from 1998 to 1999 at the Mace Head Atmospheric Research Station on the western coast of Ireland. Continuous measurements of new particle formation were taken over the 2-year period while two intensive field campaigns were also conducted, one in September 1998 and the other in June 1999. New particle events were observed on ∼90% of days and occurred throughout the year and in all air mass types. These events lasted for, typically, a few hours, with some events lasting more than 8 hours, and occurred during daylight hours coinciding with the occurrence of low tide and exposed shorelines. During these events, peak aerosol concentrations often exceeded 106 cm−3 under clean air conditions, while measured formation rates of detectable particle sizes (i.e., d > 3 nm) were of the order of 104–105 cm−3 s−1. Nucleation rates of new particles were estimated to be, at least, of the order of 105–106 cm−3 s−1 and occurred for sulphuric acid concentrations above 2 × 106 molecules cm−3; however, no correlation existed between peak sulphuric acid concentrations, low tide occurrence, or nucleation events. Ternary nucleation theory of the H2SO4-H2O-NH3 system predicts that nucleation rates far in excess of 106 cm−3 s−1 can readily occur for the given sulphuric acid concentrations; however, aerosol growth modeling studies predict that there is insufficient sulphuric acid to grow new particles (of ∼1 nm in size) into detectable sizes of 3 nm. Hygroscopic growth factor analysis of recently formed 8-nm particles illustrate that these particles must comprise some species significantly less soluble than sulphate aerosol. The nucleation-mode hygroscopic data, combined with the lack of detectable VOC emissions from coastal biota, the strong emission of biogenic halocarbon species, and the fingerprinting of iodine in recently formed (7 nm) particles suggest that the most likely species resulting in the growth of new particles to detectable sizes is an iodine oxide as suggested by previous laboratory experiments. It remains an open question whether nucleation is driven by self nucleation of iodine species, a halocarbon derivative, or whether first, stable clusters are formed through ternary nucleation of sulphuric acid, ammonia, and water vapor, followed by condensation growth into detectable sizes by condensation of iodine species. Airborne measurements confirm that nucleation occurs all along the coastline and that the coastal biogenic aerosol plume can extend many hundreds of kilometers away from the source. During the evolution of the coastal plume, particle growth is observed up to radiatively active sizes of 100 nm. Modeling studies of the yield of cloud-condensation nuclei suggest that the cloud condensation nuclei population can increase by ∼100%. Given that the production of new particles from coastal biogenic sources occurs at least all along the western coast of Europe, and possibly many other coastlines, it is suggested that coastal aerosols contribute significantly to the natural background aerosol population.


Nanoscale | 2011

Carbonate-coordinated metal complexes precede the formation of liquid amorphous mineral emulsions of divalent metal carbonates

Stephan E. Wolf; Lars Peter Müller; Raúl A. Barrea; Christopher J. Kampf; Jork Leiterer; Ulrich Panne; Thorsten Hoffmann; Franziska Emmerling; Wolfgang Tremel

The molecular composition of particle phase ozonolysis products of α-pinene is investigated to comprehend the aerosol formation process following the VOC oxidation, focusing on an understanding of new particle formation. Two analytical approaches are applied to identify low-volatile oxidation products in the particle phase; off-line investigations using preconcentration on Tenax TA© followed by solvent extraction and liquid chromatography/mass spectrometry as well as an on-line technique, in which the organic aerosols are introduced directly into the ion source of a mass spectrometer (atmospheric pressure chemical ionization / mass spectrometry (APCI/MS)). Both techniques showed the formation of difunctional carboxylic acids, compounds whose physico-chemical properties will govern most of their mass into the particle phase. Furthermore, stable binary diacid adducts could be identified by MSn-experiments. These observations might give insight into the process of new particle formation by heteromolecular homogeneous nucleation, indicating that the initial cluster formation cannot be described by macroscopic properties of single oxidation products. Instead, strong intermolecular forces between different diacids might play a key role in the formation of initial nuclei and their subsequent growth.


Atmospheric Environment | 1997

Sampling and analysis of terpenes in air. An interlaboratory comparison

Bo Larsen; Teresa Bomboi-Mingarro; Enzo Brancaleoni; A. Calogirou; Angelo Cecinato; Cécile Coeur; Ioannis Chatzinestis; Matthew Duane; Massimiliano Frattoni; J.L. Fugit; Ute Hansen; V. Jacob; Nikolaos Mimikos; Thorsten Hoffmann; Susan M. Owen; Rosa Perez-Pastor; Andreas Reichmann; Günther Seufert; Michael Staudt; Rainer Steinbrecher

The Multiple Chamber Aerosol Chemical Aging Study (MUCHACHAS) tested the hypothesis that hydroxyl radical (OH) aging significantly increases the concentration of first-generation biogenic secondary organic aerosol (SOA). OH is the dominant atmospheric oxidant, and MUCHACHAS employed environmental chambers of very different designs, using multiple OH sources to explore a range of chemical conditions and potential sources of systematic error. We isolated the effect of OH aging, confirming our hypothesis while observing corresponding changes in SOA properties. The mass increases are consistent with an existing gap between global SOA sources and those predicted in models, and can be described by a mechanism suitable for implementation in those models.


Journal of Aerosol Medicine and Pulmonary Drug Delivery | 2008

Combined Determination of the Chemical Composition and of Health Effects of Secondary Organic Aerosols: The POLYSOA Project

Urs Baltensperger; Josef Dommen; M. Rami Alfarra; Jonathan Duplissy; Kathrin Gaeggeler; Axel Metzger; Maria Cristina Facchini; Stefano Decesari; E. Finessi; Christopher Reinnig; Mathias Schott; Jörg Warnke; Thorsten Hoffmann; Barbara Klatzer; Hans Puxbaum; Marianne Geiser; Melanie Savi; Doris Lang; Markus Kalberer; Thomas Geiser

From Soil to Sky Trace gases emitted either through the activity of microbial communities or from abiotic reactions in the soil influence atmospheric chemistry. In laboratory column experiments using several soil types, Oswald et al. (p. 1233) showed that soils from arid regions and farmlands can produce substantial quantities of nitric oxide (NO) and nitrous acid (HONO). Ammonia-oxidizing bacteria are the primary source of HONO at comparable levels to NO, thus serving as an important source of reactive nitrogen to the atmosphere. HONO emissions from soil are comparable to those of NO in arid and arable regions. Abiotic release of nitrous acid (HONO) in equilibrium with soil nitrite (NO2–) was suggested as an important contributor to the missing source of atmospheric HONO and hydroxyl radicals (OH). The role of total soil-derived HONO in the biogeochemical and atmospheric nitrogen cycles, however, has remained unknown. In laboratory experiments, we found that for nonacidic soils from arid and arable areas, reactive nitrogen emitted as HONO is comparable with emissions of nitric oxide (NO). We show that ammonia-oxidizing bacteria can directly release HONO in quantities larger than expected from the acid-base and Henry’s law equilibria of the aqueous phase in soil. This component of the nitrogen cycle constitutes an additional loss term for fixed nitrogen in soils and a source for reactive nitrogen in the atmosphere.

Collaboration


Dive into the Thorsten Hoffmann's collaboration.

Top Co-Authors

Avatar

Colin D. O'Dowd

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Rujin Huang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge