Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin Anderschou Holbech Jensen is active.

Publication


Featured researches published by Benjamin Anderschou Holbech Jensen.


Nature | 2016

Human gut microbes impact host serum metabolome and insulin sensitivity

Helle Krogh Pedersen; Valborg Gudmundsdottir; Henrik Bjørn Nielsen; Tuulia Hyötyläinen; Trine Nielsen; Benjamin Anderschou Holbech Jensen; Kristoffer Forslund; Falk Hildebrand; Edi Prifti; Gwen Falony; Florence Levenez; Joël Doré; Ismo Mattila; Damian Rafal Plichta; Päivi Pöhö; Lars Hellgren; Manimozhiyan Arumugam; Shinichi Sunagawa; Sara Vieira-Silva; Torben Jørgensen; Jacob Holm; Kajetan Trošt; Karsten Kristiansen; Susanne Brix; Jeroen Raes; Jun Wang; Torben Hansen; Peer Bork; Søren Brunak; Matej Orešič

Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individuals is characterized by increased levels of branched-chain amino acids (BCAAs), which correlate with a gut microbiome that has an enriched biosynthetic potential for BCAAs and is deprived of genes encoding bacterial inward transporters for these amino acids. Prevotella copri and Bacteroides vulgatus are identified as the main species driving the association between biosynthesis of BCAAs and insulin resistance, and in mice we demonstrate that P. copri can induce insulin resistance, aggravate glucose intolerance and augment circulating levels of BCAAs. Our findings suggest that microbial targets may have the potential to diminish insulin resistance and reduce the incidence of common metabolic and cardiovascular disorders.


Gut | 2017

Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer

J Yu; Qiang Feng; Dongya Zhang; Qiaoyi Liang; Qin Y; Longqing Tang; Zhao H; Jan Stenvang; Yingrui Li; Xiaojuan Wang; Xuenian Xu; Nan Chen; William Ka Kei Wu; Jumana Y. Al-Aama; Hans Jørgen Nielsen; Pia Kiilerich; Benjamin Anderschou Holbech Jensen; Yau To; Zhou Lan; Huijue Jia; Jinxiu Li; Liang Xiao; Thomas Y. Lam; Siew C. Ng; Alfred Sl Cheng; Vincent Wai-Sun Wong; F. K. L. Chan; Yang H; Lise Madsen; Christian Datz

Objective To evaluate the potential for diagnosing colorectal cancer (CRC) from faecal metagenomes. Design We performed metagenome-wide association studies on faecal samples from 74 patients with CRC and 54 controls from China, and validated the results in 16 patients and 24 controls from Denmark. We further validated the biomarkers in two published cohorts from France and Austria. Finally, we employed targeted quantitative PCR (qPCR) assays to evaluate diagnostic potential of selected biomarkers in an independent Chinese cohort of 47 patients and 109 controls. Results Besides confirming known associations of Fusobacterium nucleatum and Peptostreptococcus stomatis with CRC, we found significant associations with several species, including Parvimonas micra and Solobacterium moorei. We identified 20 microbial gene markers that differentiated CRC and control microbiomes, and validated 4 markers in the Danish cohort. In the French and Austrian cohorts, these four genes distinguished CRC metagenomes from controls with areas under the receiver-operating curve (AUC) of 0.72 and 0.77, respectively. qPCR measurements of two of these genes accurately classified patients with CRC in the independent Chinese cohort with AUC=0.84 and OR of 23. These genes were enriched in early-stage (I–II) patient microbiomes, highlighting the potential for using faecal metagenomic biomarkers for early diagnosis of CRC. Conclusions We present the first metagenomic profiling study of CRC faecal microbiomes to discover and validate microbial biomarkers in ethnically different cohorts, and to independently validate selected biomarkers using an affordable clinically relevant technology. Our study thus takes a step further towards affordable non-invasive early diagnostic biomarkers for CRC from faecal samples.


Journal of Virology | 2013

Qualitative and Quantitative Analysis of Adenovirus Type 5 Vector-Induced Memory CD8 T Cells: Not as Bad as Their Reputation

Maria Abildgaard Steffensen; Peter J. Holst; Sanne Skovvang Steengaard; Benjamin Anderschou Holbech Jensen; Christina Bartholdy; Anette Stryhn; Jan Pravsgaard Christensen; Allan Randrup Thomsen

ABSTRACT It has been reported that adenovirus (Ad)-primed CD8 T cells may display a distinct and partially exhausted phenotype. Given the practical implications of this claim, we decided to analyze in detail the quality of Ad-primed CD8 T cells by directly comparing these cells to CD8 T cells induced through infection with lymphocytic choriomeningitis virus (LCMV). We found that localized immunization with intermediate doses of Ad vector induces a moderate number of functional CD8 T cells which qualitatively match those found in LCMV-infected mice. The numbers of these cells may be efficiently increased by additional adenoviral boosting, and, importantly, the generated secondary memory cells cannot be qualitatively differentiated from those induced by primary infection with replicating virus. Quantitatively, DNA priming prior to Ad vaccination led to even higher numbers of memory cells. In this case, the vaccination led to the generation of a population of memory cells characterized by relatively low CD27 expression and high CD127 and killer cell lectin-like receptor subfamily G member 1 (KLRG1) expression. These memory CD8 T cells were capable of proliferating in response to viral challenge and protecting against infection with live virus. Furthermore, viral challenge was followed by sustained expansion of the memory CD8 T-cell population, and the generated memory cells did not appear to have been driven toward exhaustive differentiation. Based on these findings, we suggest that adenovirus-based prime-boost regimens (including Ad serotype 5 [Ad5] and Ad5-like vectors) represent an effective means to induce a substantially expanded, long-lived population of high-quality transgene-specific memory CD8 T cells.


PLOS ONE | 2012

Increased Immunogenicity and Protective Efficacy of Influenza M2e Fused to a Tetramerizing Protein

Anne-Marie Carola Andersson; Kjell O. Håkansson; Benjamin Anderschou Holbech Jensen; Dennis Christensen; Peter Andersen; Allan Randrup Thomsen; Jan Pravsgaard Christensen

The ectodomain of the matrix 2 protein (M2e) of influenza A virus represents an attractive target for developing a universal influenza A vaccine, with its sequence being highly conserved amongst human variants of this virus. With the aim of targeting conformational epitopes presumably shared by diverse influenza A viruses, a vaccine (M2e-NSP4) was constructed linking M2e (in its consensus sequence) to the rotavirus fragment NSP498–135; due to its coiled-coil region this fragment is known to form tetramers in aqueous solution and in this manner we hoped to mimick the natural configuration of M2e as presented in membranes. M2e-NSP4 was then evaluated side-by-side with synthetic M2e peptide for its immunogenicity and protective efficacy in a murine influenza challenge model. Here we demonstrate that M2e fused to the tetramerizing protein induces an accelerated, augmented and more broadly reactive antibody response than does M2e peptide as measured in two different assays. Most importantly, vaccination with M2e-NSP4 caused a significant decrease in lung virus load early after challenge with influenza A virus and maintained its efficacy against a lethal challenge even at very low vaccine doses. Based on the results presented in this study M2e-NSP4 merits further investigation as a candidate for or as a component of a universal influenza A vaccine.


PLOS ONE | 2012

Pre-Existing Vector Immunity Does Not Prevent Replication Deficient Adenovirus from Inducing Efficient CD8 T-Cell Memory and Recall Responses

Maria Abildgaard Steffensen; Benjamin Anderschou Holbech Jensen; Peter J. Holst; Maria R. Bassi; Jan Pravsgaard Christensen; Allan Randrup Thomsen

Adenoviral vectors have shown a great potential for vaccine development due to their inherent ability to induce potent and protective CD8 T-cell responses. However, a critical issue regarding the use of these vectors is the existence of inhibitory immunity against the most commonly used Ad5 vector in a large part of the human population. We have recently developed an improved adenoviral vaccine vector system in which the vector expresses the transgene tethered to the MHC class II associated invariant chain (Ii). To further evaluate the potential of this system, the concept of pre-existing inhibitory immunity to adenoviral vectors was revisited to investigate whether the inhibition previously seen with the Ad5 vector also applied to the optimized vector system. We found this to be the case, and antibodies dominated as the mechanism underlying inhibitory vector immunity. However, presence of CD8 T cells directed against epitopes in the adenoviral vector seemed to correlate with repression of the induced response in re-vaccinated B-cell deficient mice. More importantly, despite a repressed primary effector CD8 T-cell response in Ad5-immune animals subjected to vaccination, memory T cells were generated that provided the foundation for an efficient recall response and protection upon subsequent viral challenge. Furthermore, the transgene specific response could be efficiently boosted by homologous re-immunization. Taken together, these studies indicate that adenoviral vectors can be used to induce efficient CD8 T-cell memory even in individuals with pre-existing vector immunity.


Toxicological Sciences | 2015

Aniline Is Rapidly Converted Into Paracetamol Impairing Male Reproductive Development

Jacob Holm; Clementine Chalmey; Hendrik Modick; Lars Skovgaard Jensen; Georg Dierkes; Tobias Weiss; Benjamin Anderschou Holbech Jensen; Mette Marie Nørregård; Kamil Borkowski; Bjarne Styrishave; Holger M. Koch; Séverine Mazaud-Guittot; Bernard Jégou; Karsten Kristiansen; David Møbjerg Kristensen

Industrial use of aniline is increasing worldwide with production estimated to surpass 5.6 million metric tons in 2016. Exposure to aniline occurs via air, diet, and water augmenting the risk of exposing a large number of individuals. Early observations suggest that aniline is metabolized to paracetamol/acetaminophen, likely explaining the omnipresence of low concentrations of paracetamol in European populations. This is of concern as recent studies implicate paracetamol as a disrupter of reproduction. Here, we show through steroidogenic profiling that exposure to aniline led to increased levels of the Δ4 steroids, suggesting that the activity of CYP21 was decreased. By contrast, paracetamol decreased levels of androgens likely through inhibition of CYP17A1 activity. We confirm that aniline in vivo is rapidly converted to paracetamol by the liver. Intrauterine exposure to aniline and paracetamol in environmental and pharmaceutical relevant doses resulted in shortening of the anogenital distance in mice, a sensitive marker of fetal androgen levels that in humans is associated with reproductive malformations and later life reproductive disorders. In conclusion, our results provide evidence for a scenario where aniline, through its conversion into antiandrogenic paracetamol, impairs male reproductive development.


Toxicological Sciences | 2016

Intrauterine Exposure to Paracetamol and Aniline Impairs Female Reproductive Development by Reducing Follicle Reserves and Fertility

Jacob Holm; Séverine Mazaud-Guittot; Niels Banhos Danneskiold-Samsøe; Clementine Chalmey; Benjamin Anderschou Holbech Jensen; Mette Marie Nørregård; Cecilie Hurup Hansen; Bjarne Styrishave; Terje Svingen; Anne Marie Vinggaard; Holger M. Koch; Josephine Bowles; Peter Koopman; Bernard Jégou; Karsten Kristiansen; David Møbjerg Kristensen

Studies report that fetal exposure to paracetamol/acetaminophen by maternal consumption can interfere with male reproductive development. Moreover, recent biomonitoring data report widespread presence of paracetamol in German and Danish populations, suggesting exposure via secondary (nonpharmaceutical) sources, such as metabolic conversion from the ubiquitous industrial compound aniline. In this study, we investigated the extent to which paracetamol and aniline can interfere with female reproductive development. Intrauterine exposure to paracetamol by gavage of pregnant dams resulted in shortening of the anogenital distance in adult offspring, suggesting that fetal hormone signaling had been disturbed. Female offspring of paracetamol-exposed mothers had ovaries with diminished follicle reserve and reduced fertility. Fetal gonads of exposed animals had also reduced gonocyte numbers, suggesting that the reduced follicle count in adults could be due to early disruption of germ cell development. However, ex vivo cultures of ovaries from 12.5 days post coitum fetuses showed no decrease in proliferation or expression following exposure to paracetamol. This suggests that the effect of paracetamol occurs prior to this developmental stage. Accordingly, using embryonic stem cells as a proxy for primordial germ cells we show that paracetamol is an inhibitor of cellular proliferation, but without cytotoxic effects. Collectively, our data show that intrauterine exposure to paracetamol at levels commonly observed in pregnant women, as well as its precursor aniline, may block primordial germ cell proliferation, ultimately leading to reduced follicle reserves and compromised reproductive capacity later in life.


Molecular and Cellular Endocrinology | 2015

Hepatic NAD salvage pathway is enhanced in mice on a high-fat diet.

Melanie Penke; Per Larsen; Susanne Schuster; Morten Dall; Benjamin Anderschou Holbech Jensen; Theresa Gorski; Andrej Meusel; Sandy Richter; Jonas T. Treebak; Wieland Kiess; Antje Garten

Nicotinamide phosphoribosyltransferase (Nampt) is the rate-limiting enzyme for NAD salvage and the abundance of Nampt has been shown to be altered in non-alcoholic fatty liver disease. It is, however, unknown how hepatic Nampt is regulated in response to accumulation of lipids in the liver of mice fed a high-fat diet (HFD). HFD mice gained more weight, stored more hepatic lipids and had an impaired glucose tolerance compared with control mice. NAD levels as well as Nampt mRNA expression, protein abundance and activity were significantly increased in HFD mice. Enhanced NAD levels were associated with deacetylation of p53 and Nfκb indicating increased activation of Sirt1. Despite impaired glucose tolerance and increased hepatic lipid levels in HFD mice, NAD metabolism was significantly enhanced. Thus, improved NAD metabolism may be a compensatory mechanism to protect against negative impact of hepatic lipid accumulation.


Mediators of Inflammation | 2016

FFAR4 (GPR120) Signaling Is Not Required for Anti-Inflammatory and Insulin-Sensitizing Effects of Omega-3 Fatty Acids

Simone I. Pærregaard; Marianne Agerholm; Annette Karen Serup; Tao Ma; Bente Kiens; Lise Madsen; Karsten Kristiansen; Benjamin Anderschou Holbech Jensen

Free fatty acid receptor-4 (FFAR4), also known as GPR120, has been reported to mediate the beneficial effects of omega-3 polyunsaturated fatty acids (ω3-PUFAs) by inducing an anti-inflammatory immune response. Thus, activation of FFAR4 has been reported to ameliorate chronic low-grade inflammation and insulin resistance accompanying obesity. However, conflicting reports on the role of FFAR4 in mediating the effects of ω3-PUFAs are emerging, suggesting that FFAR4 may not be the sole effector. Hence analyses of the importance of this receptor in relation to other signaling pathways and prominent effects of ω3-PUFAs remain to be elucidated. In the present study, we used Ffar4 knockouts (KO) and heterozygous (HET) mice fed either low fat, low sucrose reference diet; high fat, high sucrose ω3-PUFA; or high fat, high sucrose ω6-PUFA diet for 36 weeks. We demonstrate that both KO and HET mice fed ω3-PUFAs were protected against obesity, hepatic triacylglycerol accumulation, and whole-body insulin resistance. Moreover, ω3-PUFA fed mice had increased circulating protein levels of the anti-inflammatory adipokine, adiponectin, decreased fasting insulin levels, and decreased mRNA expression of several proinflammatory molecules within visceral adipose tissue. In conclusion, we find that FFAR4 signaling is not required for the reported anti-inflammatory and insulin-sensitizing effects mediated by ω3-PUFAs.


PLOS ONE | 2013

The Availability of a Functional Tumor Targeting T-Cell Repertoire Determines the Anti-Tumor Efficiency of Combination Therapy with Anti-CTLA-4 and Anti-4-1BB Antibodies

Benjamin Anderschou Holbech Jensen; Sara R. Pedersen; Jan Pravsgaard Christensen; Allan Randrup Thomsen

It has previously been found that combination therapy with anti-CTLA-4 and anti-4-1BB antibodies may enhance tumor immunity. However, this treatment is not efficient against all tumors, and it has been suggested that variations in tumor control may reflect differences in the immunogenicity of different tumors. In the present report, we have formally tested this hypothesis. Comparing the efficiency of combination antibody therapy against two antigenically distinct variants of the B16.F10 melanoma cell line, we observed that antibody therapy delayed the growth of a variant expressing an exogenous antigen (P<0.0001), while this treatment failed to protect against the non-transfected parental line (P = 0.1850) consistent with published observations. As both cell lines are poorly immunogenic in wild type mice, these observations suggested that the magnitude of the tumor targeting T-cell repertoire plays a major role in deciding the efficiency of this antibody treatment. To directly test this assumption, we made use of mice expressing the exogenous antigen as a self-antigen and therefore carrying a severely purged T-cell repertoire directed against the major tumor antigen. Notably, combination therapy completely failed to inhibit tumor growth in the latter mice (P = 0.8584). These results underscore the importance of a functionally intact T-cell population as a precondition for the efficiency of treatment with immunomodulatory antibodies. Clinically, the implication is that this type of antibody therapy should be attempted as an early form of tumor-specific immunotherapy before extensive exhaustion of the tumor-specific T-cell repertoire has occurred.

Collaboration


Dive into the Benjamin Anderschou Holbech Jensen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacob Holm

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Peter J. Holst

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lise Madsen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge