Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter J. Holst is active.

Publication


Featured researches published by Peter J. Holst.


Journal of Clinical Investigation | 2001

Tumorigenesis induced by the HHV8-encoded chemokine receptor requires ligand modulation of high constitutive activity.

Peter J. Holst; Mette M. Rosenkilde; Denise Manfra; Shu-Cheng Chen; Maria T. Wiekowski; Birgitte Holst; Felix Cifire; Martin Lipp; Thue W. Schwartz; Sergio A. Lira

ORF74 (or KSHV-vGPCR) is a highly constitutively active G protein-coupled receptor encoded by HHV8 that is regulated both positively and negatively by endogenous chemokines. When expressed in transgenic mice, this chemokine receptor induces an angioproliferative disease closely resembling Kaposi sarcoma (KS). Here we demonstrate that several lines of mice carrying mutated receptors deficient in either constitutive activity or chemokine regulation fail to develop KS-like disease. In addition, animals expressing a receptor that preserves chemokine binding and constitutive activity but that does not respond to agonist stimulation have a much lower incidence of angiogenic lesions and tumors. These results indicate that induction of the KS-like disease in transgenic mice by ORF74 requires not only high constitutive signaling activity but also modulation of this activity by endogenous chemokines.


Journal of Biological Chemistry | 2006

Molecular Pharmacological Phenotyping of EBI2 AN ORPHAN SEVEN-TRANSMEMBRANE RECEPTOR WITH CONSTITUTIVE ACTIVITY

Mette M. Rosenkilde; Tau Benned-Jensen; Helene Andersen; Peter J. Holst; Thomas N. Kledal; Hans R. Lüttichau; Jørgen K. Larsen; Jan Pravsgaard Christensen; Thue W. Schwartz

Epstein-Barr virus (EBV)-induced receptor 2 (EBI2) is an orphan seven-transmembrane (7TM) receptor originally identified as the most up-regulated gene (>200-fold) in EBV-infected cells. Here we show that EBI2 signals with constitutive activity through Gαi as determined by a receptor-mediated inhibition of forskolin-induced cAMP production and an induction of the serum response element-driven transcriptional activity in a pertussis toxin-sensitive manner. Gαs and Gαq were not activated constitutively as determined by the lack of cAMP production, the lack of inositol phosphate turnover, and the lack of activities of the transcription factors: cAMP response element-binding protein and nuclear factor-κB. Immunohistochemistry and confocal microscopy of FLAG- and green fluorescent protein-tagged EBI2 revealed cell-surface expression. A putative N-terminal truncated version of EBI2, Δ4-EBI2, showed similar expression and signaling through Gαi as full-length EBI2. By using a 32P-labeled EBI2 probe we found a very high expression in lymphoid tissue (spleen and lymph node) and peripheral blood mononuclear cells and a high expression in lung tissue. Real-time PCR of EBV-infected cells showed high expression of EBI2 during latent and lytic infection, in contrast to the EBV-encoded 7TM receptor BILF1, which was induced during lytic infection. EBI2 clustered with the orphan GPR18 by alignment analysis as well as by close proximity in the chromosomal region 13q32.3. Based on the constitutive signaling and cellular expression pattern of EBI2, it is suggested that it may function in conjunction with BILF1 in the reprogramming of the cell during EBV infection.


Journal of Biological Chemistry | 2006

Prohormone Convertase 1/3 Is Essential for Processing of the Glucose-dependent Insulinotropic Polypeptide Precursor

Randi Ugleholdt; Marie-Louise H. Poulsen; Peter J. Holst; Jean-Claude Irminger; Cathrine Ørskov; Jens Z. Pedersen; Mette M. Rosenkilde; Xiaorong Zhu; Donald F. Steiner; Jens J. Holst

The physiology of the incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), and their role in type 2 diabetes currently attract great interest. Recently we reported an essential role for prohormone convertase (PC) 1/3 in the cleavage of intestinal proglucagon, resulting in formation of GLP-1, as demonstrated in PC1/3-deficient mice. However, little is known about the endoproteolytic processing of the GIP precursor. This study investigates the processing of proGIP in PC1/3 and PC2 null mice and in cell lines using adenovirus-mediated overexpression. Supporting a role for PC1/3 in proGIP processing, we found co-localization of GIP and PC1/3 but not PC2 in intestinal sections by immunohistochemistry, and analysis of intestinal extracts from PC1/3-deficient animals demonstrated severely impaired processing to GIP, whereas processing to GIP was unaltered in PC2-deficient mice. Accordingly, overexpression of preproGIP in the neuroendocrine AtT-20 cell line that expresses high levels of endogenous PC1/3 and negligible levels of PC2 resulted in production of GIP. Similar results were obtained after co-expression of preproGIP and PC1/3 in GH4 cells that express no PC2 and only low levels of PC1/3. In addition, studies in GH4 cells and the α-TC1.9 cell line, expressing PC2 but not PC1/3, indicate that PC2 can mediate processing to GIP but also to other fragments not found in intestinal extracts. Taken together, our data indicate that PC1/3 is essential and sufficient for the production of the intestinal incretin hormone GIP, whereas PC2, although capable of cleaving proGIP, does not participate in intestinal proGIP processing and is not found in intestinal GIP-expressing cells.


Journal of Immunology | 2008

MHC Class II-Associated Invariant Chain Linkage of Antigen Dramatically Improves Cell-Mediated Immunity Induced by Adenovirus Vaccines

Peter J. Holst; Maria Rathmann Sørensen; Camilla Maria Mandrup Jensen; C. Ørskov; Allan Randrup Thomsen; Jan Pravsgaard Christensen

The ideal vaccine induces a potent protective immune response, which should be rapidly induced, long-standing, and of broad specificity. Recombinant adenoviral vectors induce potent Ab and CD8+ T cell responses against transgenic Ags within weeks of administration, and they are among the most potent and versatile Ag delivery vehicles available. However, the impact of chronic infections like HIV and hepatitis C virus underscore the need for further improvements. In this study, we show that the protective immune response to an adenovirus-encoded vaccine Ag can be accelerated, enhanced, broadened, and prolonged by tethering of the rAg to the MHC class II-associated invariant chain (Ii). Thus, adenovirus-vectored vaccines expressing lymphocytic choriomeningitis virus (LCMV)-derived glycoprotein linked to Ii increased the CD4+ and CD8+ T cell stimulatory capacity in vitro and in vivo. Furthermore, mice vaccinated with a single dose of adenovirus-expressing LCMV-derived glycoprotein linked to Ii were protected against lethal virus-induced choriomeningitis, lethal challenge with strains mutated in immunodominant T cell epitopes, and systemic infection with a highly invasive strain. In therapeutic tumor vaccination, the vaccine was as efficient as live LCMV. In comparison, animals vaccinated with a conventional adenovirus vaccine expressing unmodified glycoprotein were protected against systemic infection, but only temporarily against lethal choriomeningitis, and this vaccine was less efficient in tumor therapy.


PLOS ONE | 2009

CD4 and CD8 T cell responses to the M. tuberculosis Ag85B-TB10.4 promoted by adjuvanted subunit, adenovector or heterologous prime boost vaccination.

Tara Elvang; Jan Pravsgaard Christensen; Rolf Billeskov; Truc Thi Kim Thanh Hoang; Peter J. Holst; Allan Randrup Thomsen; Peter Andersen; Jes Dietrich

Background Although CD4 T cells are crucial for defense against M.tb, it is still not clear whether the optimal response against M.tb in fact involves both CD4 and CD8 T cells. To test this, we used a new vaccine strategy that generated a strong balanced T cell response consisting of both CD4 and CD8 T cells. Methods and Findings To compare CD4 and CD8 responses against Ag85B-TB10.4 (H4), H4 was delivered as a subunit vaccine in cationic liposomes (CAF01), expressed in Ad5 (Ad-H4) or as a heterologous prime boost vaccination. H4/CAF01 induced primarily CD4 T cells and Ad-H4 gave predominantly a CD8 T cell response. In contrast, the heterologous prime boost combination resulted in augmentation of both the CD4 and CD8 response. The majority (>40%) of the CD4 T cells induced by the heterologous prime boost protocol were polyfunctional, and expressed IFN-γ+, IL-2+, and TNF-α+, whereas most of the CD8 T cells expressed IFN-γ+ and TNF-α+ and possessed strong cytotoxic potential. The heterologous prime boost protocol also gave an increase in protective efficacy against M.tb challenge compared to H4/CAF01 and Ad-H4. Both the H4 specific CD4 and CD8 T cells were recruited to the site of infection, at the onset of infection. However, compared to CD8 T cells, CD4 T cells showed more extensive recruitment and were the main T cell subset proliferating at the site of infection. Conclusions/Significance Heterologous prime boost based on H4, produced an additive effect on the priming of CD4 and CD8 cells and in terms of the protective capacity of the vaccine, and therefore represent an interesting new vaccine strategy against M.tb. However, CD4 and CD8 T cells respond very differently to live M.tb challenge, in a manner which supports the consensus that CD4 T cells do play the major role during the early stages of an M.tb infection.


Journal of Immunology | 2010

Quality of the Transgene-Specific CD8+ T Cell Response Induced by Adenoviral Vector Immunization Is Critically Influenced by Virus Dose and Route of Vaccination

Peter J. Holst; Cathrine Ørskov; Allan Randrup Thomsen; Jan Pravsgaard Christensen

Adenoviral vectors have been widely used for experimental gene therapy and vaccination, yet there is a surprising lack of knowledge connecting the route and dose of adenovirus administration to the induced transgene-specific immune response. We have recently demonstrated polyfunctional CD8+ T cells and protective memory responses using adenoviral vectors, which seem to contrast with recent reports suggesting that an exhausted CD8+ T cell phenotype is induced by inoculation with adenoviral vectors. Accordingly, we investigated the route and dose interrelationship for transgene-specific CD8+ T cells using adenoviral vectors encoding β-galactosidase applied either s.c. or i.v. Irrespective of the route of inoculation, most of the adenoviral inoculum was found to disseminate systemically as the dose was raised beyond 109 particles. The number of transgene-specific CD8+ T cells correlated positively with dissemination, whereas the functional capacity of the generated T cells correlated inversely with vector dissemination. A comparison of the immune response to s.c. or i.v. administration at moderate doses revealed that inoculation by both routes induced a transient peak of IFN-γ–producing CD8+ T cells 2 to 3 wk postinfection, but following i.v. administration, these cells were only detected in the liver. Two to four months after systemic, but not peripheral, immunization, dysfunctional transgene-specific CD8+ T cells impaired in both cytokine production and important in vivo effector functions, accumulated in the spleen. These findings indicate that the localization of the adenoviral inoculum and not the total Ag load determines the quality of the CD8+ T cell response induced with adenoviral vaccines.


Cancer Cell | 2015

Targeting Human Cancer by a Glycosaminoglycan Binding Malaria Protein.

Ali Salanti; Thomas M. Clausen; Mette Ø. Agerbæk; Nader Al Nakouzi; Madeleine Dahlbäck; Htoo Zarni Oo; Sherry Lee; Tobias Gustavsson; Jamie R. Rich; Bradley J. Hedberg; Yang Mao; Line Barington; Marina Ayres Pereira; Janine LoBello; Makoto Endo; Ladan Fazli; Jo Soden; Chris K. Wang; Adam F. Sander; Robert Dagil; Susan Thrane; Peter J. Holst; Le Meng; Francesco Favero; Glen J. Weiss; Morten A. Nielsen; Jim Freeth; Torsten O. Nielsen; Joseph Zaia; Nhan L. Tran

Plasmodium falciparum engineer infected erythrocytes to present the malarial protein, VAR2CSA, which binds a distinct type chondroitin sulfate (CS) exclusively expressed in the placenta. Here, we show that the same CS modification is present on a high proportion of malignant cells and that it can be specifically targeted by recombinant VAR2CSA (rVAR2). In tumors, placental-like CS chains are linked to a limited repertoire of cancer-associated proteoglycans including CD44 and CSPG4. The rVAR2 protein localizes to tumors in vivo and rVAR2 fused to diphtheria toxin or conjugated to hemiasterlin compounds strongly inhibits in vivo tumor cell growth and metastasis. Our data demonstrate how an evolutionarily refined parasite-derived protein can be exploited to target a common, but complex, malignancy-associated glycosaminoglycan modification.


Journal of Immunology | 2011

Enhanced and Sustained CD8+ T Cell Responses with an Adenoviral Vector-Based Hepatitis C Virus Vaccine Encoding NS3 Linked to the MHC Class II Chaperone Protein Invariant Chain

Marianne Mikkelsen; Peter J. Holst; Jens Bukh; Allan Randrup Thomsen; Jan Pravsgaard Christensen

Potent and broad cellular immune responses against the nonstructural (NS) proteins of hepatitis C virus (HCV) are associated with spontaneous viral clearance. In this study, we have improved the immunogenicity of an adenovirus (Ad)-based HCV vaccine by fusing NS3 from HCV (Strain J4; Genotype 1b) to the MHC class II chaperone protein invariant chain (Ii). We found that, after a single vaccination of C57BL/6 or BALB/c mice with Ad-IiNS3, the HCV NS3-specific CD8+ T cell responses were significantly enhanced, accelerated, and prolonged compared with the vaccine encoding NS3 alone. The AdIiNS3 vaccination induced polyfunctional CD8+ T cells characterized by coproduction of IFN-γ, TNF-α and IL-2, and this cell phenotype is associated with good viral control. The memory CD8+ T cells also expressed high levels of CD27 and CD127, which are markers of long-term survival and maintenance of T cell memory. Functionally, the AdIiNS3-vaccinated mice had a significantly increased cytotoxic capacity compared with the AdNS3 group. The AdIiNS3-induced CD8+ T cells protected mice from infection with recombinant vaccinia virus expressing HCV NS3 of heterologous 1b strains, and studies in knockout mice demonstrated that this protection was mediated primarily through IFN-γ production. On the basis of these promising results, we suggest that this vaccination technology should be evaluated further in the chimpanzee HCV challenge model.


Vaccine | 2010

Adenoviral vaccination combined with CD40 stimulation and CTLA-4 blockage can lead to complete tumor regression in a murine melanoma model.

Maria Rathmann Sørensen; Peter J. Holst; Maria Abildgaard Steffensen; Jan Pravsgaard Christensen; Allan Randrup Thomsen

Therapeutic vaccination with replication deficient adenovirus expressing a viral antigen linked to invariant chain was recently found to markedly delay the growth of B16.F10 melanomas expressing the same antigen; however, complete regression of the tumors was never observed. Here we show that the delay in tumor growth can be converted to complete regression and long-term survival in 30-40% of the mice by a booster vaccination plus combinational treatment with agonistic anti-CD40 monoclonal antibodies (mAb) and anti-CTLA-4 mAb. Regarding the mechanism underlying the improved clinical effect, analysis of the tumor-specific response revealed a significantly prolonged tumor-specific CD8 T cell response in spleens of the mice receiving the combinational treatment compared with mice receiving either treatment individually. Matching this, CD8 T cell depletion completely prevented tumor control. These results indicate that even with a strong tumor vaccine candidate, combinatorial treatment may be required to obtain clinically relevant results.


European Journal of Immunology | 2009

Vaccination with an adenoviral vector encoding the tumor antigen directly linked to invariant chain induces potent CD4(+) T-cell-independent CD8(+) T-cell-mediated tumor control.

Maria Rathmann Sørensen; Peter J. Holst; Hanspeter Pircher; Jan Pravsgaard Christensen; Allan Randrup Thomsen

Antigen‐specific immunotherapy is an attractive strategy for cancer control. In the context of antiviral vaccines, adenoviral vectors have emerged as a favorable means for immunization. Therefore, we chose a strategy combining use of these vectors with another successful approach, namely linkage of the vaccine antigen to invariant chain (Ii). To evaluate this strategy we used a mouse model, in which an immunodominant epitope (GP33) of the LCMV glycoprotein (GP) represents the tumor‐associated neoantigen. Prophylactic vaccination of C57BL/6 mice with a replication‐deficient human adenovirus 5 vector encoding GP linked to Ii (Ad‐Ii‐GP) resulted in complete protection against GP33‐expressing B16.F10 tumors. Therapeutic vaccination with Ad‐Ii‐GP delayed tumor growth by more than 2 wk compared with sham vaccination. Notably, therapeutic vaccination with the linked vaccine was significantly better than vaccination with adenovirus expressing GP alone (Ad‐GP), or GP and Ii unlinked (Ad‐GP+Ii). Ad‐Ii‐GP‐ induced tumor control depended on an improved generation of the tumor‐associated neoantigen‐specific CD8+ T‐cell response and was independent of CD4+ T cells. IFN‐γ was shown to be a key player during the tumor degradation. Finally, Ad‐Ii‐GP but not Ad‐GP vaccination can break the immunological non‐reactivity in GP transgenic mice indicating that our vaccine strategy will prove efficient also against endogenous tumor antigens.

Collaboration


Dive into the Peter J. Holst's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria R. Bassi

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge